1
|
Civil R, Brook MS, Santos L, Varley I, Elliott-Sale KJ, Lensu S, Ahtiainen JP, Kainulainen H, Koch LG, Britton SL, Wilkinson DJ, Smith K, Atherton PJ, Sale C. The effects of endurance trainability phenotype, sex, and interval running training on bone collagen synthesis in adult rats. Bone 2024; 189:117257. [PMID: 39299627 DOI: 10.1016/j.bone.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Bone is influenced by many factors such as genetics and mechanical loading, but the short-term physiological effects of these factors on bone (re)modelling are not well characterised. This study investigated the effects of endurance trainability phenotype, sex, and interval running training (7-week intervention) on bone collagen formation in rats using a deuterium oxide stable isotope tracer method. Bone samples of the femur diaphysis, proximal tibia, mid-shaft tibia, and distal tibia were collected after necropsy from forty-six 9 ± 3-month male and female rats selectively bred for yielding low (LRT) or high (HRT) responses to endurance training. Bone collagen proteins were isolated and hydrolysed, and fractional synthetic rates (FSRs) were determined by the incorporation of deuterium into protein-bound alanine via GC-pyrolysis-IRMS. There was a significant large main effect of phenotype at the femur site (p < 0.001; η2g = 0.473) with HRT rats showing greater bone collagen FSRs than LRT rats. There was a significant large main effect of phenotype (p = 0.008; η2g = 0.178) and a significant large main effect of sex (p = 0.005; η2g = 0.196) at the proximal site of the tibia with HRT rats showing greater bone collagen FSRs than LRT rats, and male rats showing greater bone collagen FSRs compared to female rats. There was a significant large main effect of training at the mid-shaft site of the tibia (p = 0.012; η2g = 0.159), with rats that underwent interval running training having greater bone collagen FSRs than control rats. Similarly, there was a significant large main effect of training at the distal site of the tibia (p = 0.050; η2g = 0.156), with rats in the interval running training group having greater bone collagen FSRs compared to rats in the control group. Collectively, this evidence highlights that bone responses to physiological effects are site-specific, indicating that interval running training has positive effects on bone collagen synthesis at the tibial mid-shaft and distal sites, whilst genetic factors affect bone collagen synthesis at the femur diaphysis (phenotype) and proximal tibia (phenotype and sex) in rats.
Collapse
Affiliation(s)
- Rita Civil
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Matthew S Brook
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK.; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences at the University of Nottingham, Nottingham, UK
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (CMAP), MRC-Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
2
|
Xiao Y, Pan H, Huang R, Wu P, Peng C, Luo J, Wu J, Wang Z, Lin H, Liang J, Ji Z. Association of hemoglobin-to-red blood cell distribution width ratio and bone mineral density in older adults. BMC Musculoskelet Disord 2024; 25:866. [PMID: 39472899 PMCID: PMC11523879 DOI: 10.1186/s12891-024-07984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Hemoglobin-to-Red Cell Distribution Width Ratio (HRR) represents novel prognostic markers for diseases. However, there remains a lack of systematic research into the relationship between HRR and Bone Mineral Density (BMD) or osteoporosis in older adults. METHODS This study utilized information from the NHANES database, selecting individuals over 50 years of age with complete femoral DXA scans and full blood counts. The relationship between HRR and femoral BMD was investigated using weighted linear models and restricted cubic spline (RCS) models. Moreover, the association between HRR and osteoporosis was further explored using logistic regression models and RCS models, with subgroup analysis conducted to test the robustness of the results. RESULTS This study included a total of 7,149 participants, and the BMD of the group with higher HRR was significantly greater than that of the group with lower HRR. Weighted linear regression analysis found a linear positive correlation between HRR and femoral BMD. When HRR was converted from a continuous variable to a categorical variable, this relationship remained stable. In addition, multivariate logistic regression analysis showed that for each 1-unit increase in HRR, the prevalence of osteoporosis significantly decreased (OR = 0.25, 95% CI: 0.12-0.51), further confirming the findings of this study. Subgroup analysis showed that this association was not significantly affected by confounding factors across different populations. CONCLUSION HRR may serve as one of the potential indicators for evaluating BMD and assessing the prevalence of osteoporosis in the elderly. Elevating HRR levels may play a crucial role in the prevention and slowing of osteoporosis progression.
Collapse
Affiliation(s)
- Yongchun Xiao
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huawen Pan
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Spine Surgery, Maoming People's Hospital, Maoming, 525000, China
| | - Ruihua Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Ping Wu
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Cheng Peng
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jianxian Luo
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jianxiong Wu
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhifeng Wang
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hongsheng Lin
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Junze Liang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, 510630, China.
| | - Zhisheng Ji
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Li Q, Wang J, Zhao C. From Genomics to Metabolomics: Molecular Insights into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches. Biomedicines 2024; 12:2389. [PMID: 39457701 PMCID: PMC11505085 DOI: 10.3390/biomedicines12102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies-genomics, transcriptomics, proteomics, and metabolomics-have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.
Collapse
Affiliation(s)
- Qingmei Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Congzhe Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
4
|
Moradi N, Azizi M, Niromand E, Tahmasebi W. The effect of combined training with quinoa seed supplementation on total antioxidant capacity, HbA1c, lipid profile, and blood pressure in women with type 2 diabetes. SPORT SCIENCES FOR HEALTH 2024. [DOI: 10.1007/s11332-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/25/2024] [Indexed: 01/05/2025]
|
5
|
Hatakeyama J, Inoue S, Li C, Takamura D, Jiang H, Kuroki H, Moriyama H. Effects of acute- and long-term aerobic exercises at different intensities on bone in mice. J Bone Miner Metab 2024; 42:185-195. [PMID: 38349543 DOI: 10.1007/s00774-023-01491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 04/01/2024]
Abstract
INTRODUCTION Exercise intensity determines the benefits of aerobic exercise. Our objectives were, in aerobic exercise at different intensities, to determine (1) changes in bone metabolism-related genes after acute exercise and (2) changes in bone mass, strength, remodeling, and bone formation-related proteins after long-term exercise. MATERIALS AND METHODS Total 36 male C57BL/6J mice were divided into a control group and exercise groups at 3 different intensities: low, moderate, or high group. Each exercise group was assigned to acute- or long-term exercise groups. Tibias after acute exercise were evaluated by real-time PCR analysis. Furthermore, hindlimbs of long-term exercise were assessed by micro-CT, biomechanical, histological, and immunohistochemical analyses. RESULTS Acute moderate-intensity exercise decreased RANKL level as bone resorption marker, whereas low- and high-intensity exercise did not alter it. Additionally, only long-term exercise at moderate intensity increased bone mass and strength. Moderate-intensity exercise promoted osteoblast activity and suppressed osteoclast activity. After low- and high-intensity exercise, osteoblast and osteoclast activity were unchanged. An increase in the number of β-catenin-positive cells and a decrease in sclerostin-positive cells were observed in the only moderate group. CONCLUSION These results showed that moderate-intensity exercise can inhibit bone resorption earlier, and long-term exercise can increase bone mass and strength through promoted bone formation via the Wnt/β-catenin activation. High-intensity exercise, traditionally considered better for bone, may fail to stimulate bone remodeling, leading to no change in bone mass and strength. Our findings suggest that moderate-intensity exercise, neither too low nor high, can maintain bone health.
Collapse
Affiliation(s)
- Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Daisuke Takamura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Chuo-ku, Kobe, Japan
| | - Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Graduate School of Medicine, Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
6
|
Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet 2023; 14:1232987. [PMID: 37621703 PMCID: PMC10445150 DOI: 10.3389/fgene.2023.1232987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Exercise genetics/genomics is a growing research discipline comprising several Strengths and Opportunities but also deals with Weaknesses and Threats. This "systematic SWOT overview of non-systematic reviews" (sSWOT) aimed to identify the Strengths, Weaknesses, Opportunities, and Threats linked to exercise genetics/genomics. A systematic search was conducted in the Medline and Embase databases for non-systematic reviews to provide a comprehensive overview of the current literature/research area. The extracted data was thematically analyzed, coded, and categorized into SWOT clusters. In the 45 included reviews five Strengths, nine Weaknesses, six Opportunities, and three Threats were identified. The cluster of Strengths included "advances in technology", "empirical evidence", "growing research discipline", the "establishment of consortia", and the "acceptance/accessibility of genetic testing". The Weaknesses were linked to a "low research quality", the "complexity of exercise-related traits", "low generalizability", "high costs", "genotype scores", "reporting bias", "invasive methods", "research progress", and "causality". The Opportunities comprised of "precision exercise", "omics", "multicenter studies", as well as "genetic testing" as "commercial"-, "screening"-, and "anti-doping" detection tool. The Threats were related to "ethical issues", "direct-to-consumer genetic testing companies", and "gene doping". This overview of the present state of the art research in sport genetics/genomics indicates a field with great potential, while also drawing attention to the necessity for additional advancement in methodological and ethical guidance to mitigate the recognized Weaknesses and Threats. The recognized Strengths and Opportunities substantiate the capability of genetics/genomics to make significant contributions to the performance and wellbeing of athletes.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Mourtakos S, Kavouras S, Vasiliou S, Soultanakis H, Bardis C, Sidossis L, Tenta R. Bone Mineral Content Distribution in Response to Long-term Training of Elite Rowers. In Vivo 2023; 37:611-617. [PMID: 36881058 PMCID: PMC10026654 DOI: 10.21873/invivo.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Bone response to exercise depends on the type and size of the mechanical stimulus. In rowing, athletes are exposed to low mechanical but large compression loads mainly on the trunk. Thus, this study aimed to investigate the impact of rowing on total and regional bone quality and bone turnover parameters in elite rowing athletes vs. control subjects. MATERIALS AND METHODS Twenty world-class rowers and twenty active, but not athletic, men participated in the study. Bone mineral density (BMD) and body mineral content (BMC) were assessed by dual-energy X-ray absorptiometry (DXA). Bone turnover markers (OPG and RANKL) in serum were assessed by Elisa method. RESULTS The current research revealed no statistical difference in total bone mineral density (TBMD) and total body mineral content (TBMC) between elite-level rowers and control subjects. Nevertheless, Trunk BMC (p=0.02) and Trunk BMC/TBMC ratio (p=0.01) were significantly higher in rowers than those in the control group. In contrast, in the control group, the Lower limbs BMC/TBMC ratio (p=0.007) was statistically higher. Furthermore, RANKL (p=0.011) and OPG (p=0.03) were statistically significantly higher in rowers, whereas the OPG/RANKL ratio (p=0.012) was statistically higher in the control group. CONCLUSION Rowing, as a non-weight-bearing exercise, did not alter total bone density but induced a remarkable redistribution of bone density from the lower limbs to the trunk. In addition, the current evidence suggests that the underlying molecular mechanism is based on turnover of intermediates, rather than solely bone redistribution.
Collapse
Affiliation(s)
- Stamatis Mourtakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - Stavros Kavouras
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Hydration Science Lab, College of Health Solution, Arizona State University, Phoenix, AZ, U.S.A
| | - Stathis Vasiliou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Helen Soultanakis
- Department of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - Costas Bardis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - Labros Sidossis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, U.S.A
| | - Roxane Tenta
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece;
| |
Collapse
|
8
|
Reinker L, Bläsing D, Bierl R, Ulbricht S, Dendorfer S. Correlation of Acceleration Curves in Gravitational Direction for Different Body Segments during High-Impact Jumping Exercises. SENSORS (BASEL, SWITZERLAND) 2023; 23:2276. [PMID: 36850874 PMCID: PMC9967370 DOI: 10.3390/s23042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Osteoporosis is a common disease of old age. However, in many cases, it can be very well prevented and counteracted with physical activity, especially high-impact exercises. Wearables have the potential to provide data that can help with continuous monitoring of patients during therapy phases or preventive exercise programs in everyday life. This study aimed to determine the accuracy and reliability of measured acceleration data at different body positions compared to accelerations at the pelvis during different jumping exercises. Accelerations at the hips have been investigated in previous studies with regard to osteoporosis prevention. Data were collected using an IMU-based motion capture system (Xsens) consisting of 17 sensors. Forty-nine subjects were included in this study. The analysis shows the correlation between impacts and the corresponding drop height, which are dependent on the respective exercise. Very high correlations (0.83-0.94) were found between accelerations at the pelvis and the other measured segments at the upper body. The foot sensors provided very weak correlations (0.20-0.27). Accelerations measured at the pelvis during jumping exercises can be tracked very well on the upper body and upper extremities, including locations where smart devices are typically worn, which gives possibilities for remote and continuous monitoring of programs.
Collapse
Affiliation(s)
- Lukas Reinker
- Laboratory for Biomechanics, OTH Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), OTH Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Dominic Bläsing
- Department of Prevention Research and Social Medicine, Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Rudolf Bierl
- Sensorik-ApplikationsZentrum, OTH Regensburg, 93053 Regensburg, Germany
| | - Sabina Ulbricht
- Department of Prevention Research and Social Medicine, Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Sebastian Dendorfer
- Laboratory for Biomechanics, OTH Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), OTH Regensburg and University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
10
|
Sport Activity Load and Skeletomuscular Robustness in Elite Youth Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095083. [PMID: 35564478 PMCID: PMC9104919 DOI: 10.3390/ijerph19095083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
In an earlier report, bone mineral reference values for young athletes were developed. This study addressed variations in bone mineral parameters of young athletes participating in sports with different mechanical loads. The bone mineral status of 1793 male and female athletes, 11 to 20 years of age, in several sports was measured with DEXA. Specific bone mineral parameters were converted to z-scores relative to age- and sex-specific reference values specified by the DEXA software. Z-score profiles and principal components analyses were used to identify body structural components in the young athletes and to evaluate the associations between the identified component and type of sport defined by mechanical load. A unique skeletomuscular robusticity of male wrestlers, pentathletes, and cyclists was noted: wrestlers had significantly more developed skeletomuscular robusticity and bone mineral density compared to the age-group average among elite athletes, while pentathletes and cyclists had lower bone mineral parameters than the age-group references among elite athletes. Among female athletes, bone mineral parameters of both the trunk and extremities of rhythmic gymnasts and pentathletes were significantly lower compared to the age-group means for elite athletes. The bone mineral development of elite young athletes varies with the impact forces associated with their respective sports. The skeletal development of cyclists, pentathletes, and rhythmic gymnasts should be monitored regularly as their bone development lags behind that of their athlete peers and the reference for the general population.
Collapse
|
11
|
Cossio-Bolanos M, Vidal-Espinoza R, Fuentes-Lopez J, Castelli Correia de Campos LF, Andruske CL, Urra-Albornoz C, Alvear Vasquez F, Gomez-Campos R. Reference values for bone density and bone mineral content from 5 to 80 years old in a province of Chile. PeerJ 2022; 10:e13092. [PMID: 35345584 PMCID: PMC8957281 DOI: 10.7717/peerj.13092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
Background The assessment of bone health throughout the life cycle is essential to determine fracture risk. The objectives of the work were (a) compare bone mineral density and content with international references from the United States, (b) determine maximum bone mass, (c) propose references for bone health measurements from ages 5 to 80 years old. Methods Research was carried out on 5,416 subjects. Weight and height were measured. Body Mass Index (BMI) was calculated. The total body was scanned using dual energy X-ray absorptiometry (DXA). Information was extracted from the bone health measures (bone mineral density (BMD) and bone mineral content (BMC)) for both sexes, according to pediatric and adult software. Results and Discussion Differences were identified between the mean values of Chilean and American men for BMD (~0.03 to 0.11 g/cm2) and BMC (~0.15 to 0.46 g). Chilean females showed average values for BMD similar to the US references (~-0.01 to 0.02 g/cm2). At the same time, they were relatively higher for BMC (~0.07 to 0.33 g). The cubic polynomial regression model reflected a relationship between BMD and BMC with chronological age in both sexes. For males, R2 was higher (R2 = 0.72 and 0.75) than for females (R2 = 0.59 and 0.66). The estimate of maximum bone mass (MBM) for males emerged at 30 years old (1.45 ± 0.18 g/cm2 of BMD and 3.57 ± 0.60 g of BMC) and for females at age 28 (1.22 ± 0.13 g/cm2 of BMD and 2.57 ± 0.44 g of BMC). The LMS technique was used to generate smoothed percentiles for BMD and BMC by age and sex. Results showed that maximum bone mass occurred in females at age 28 and in males at 30. Reference values obtained from this research may be used to evaluate bone health, diagnose bone fragility and osteoporosis in individuals and regional population groups.
Collapse
Affiliation(s)
- Marco Cossio-Bolanos
- Departamento de Ciencias de la Actividad Física, Universidad Católica del Maule, Maule, Talca, Chile
| | | | - Jose Fuentes-Lopez
- Instituto de Investigación en Ciencias de la Educación (IICE), Escuela Profesional de Educación Física, Universidad Nacional del Altiplano de Puno, Puno, Perú
| | | | | | - Camilo Urra-Albornoz
- Escuela de Ciencias del Deporte y Actividad Física, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | | | - Rossana Gomez-Campos
- Departamento de Diversidad e Inclusividad Educativa, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
12
|
Yang X, Ye J, Cheng B, Cheng S, Liu L, Meng P, Liang C, Yao Y, Wen Y, Zhang Z, Li C, Zhang H, Chen Y, Zhang J, Pan C, Jia Y, Zhang F. Evaluating the associations of adult heel BMD with birth weight and growth parameters at age 10 in UK Biobank cohort. Bone 2021; 152:116038. [PMID: 34118445 DOI: 10.1016/j.bone.2021.116038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study was aimed to evaluate the associations of adult heel bone mineral density (BMD) with birth weight and growth parameters at the age of ten years. METHODS The analysis data (97178-178,494 subjects) was derived from the UK Biobank cohort. Birth weight, comparative body size and height size at the age of ten years were determined by self-report. The heel BMD was estimated by the Quantitative Ultrasound Index through the calcaneus. Linear regression analysis was applied to test the associations of adult heel BMD with birth weight and growth parameters at the age of ten years, respectively. Age, sex, body mass index and 10 principle components (PC) of population structure were used as covariates in the regression analysis of total samples. In sex-specific analysis, age, body mass index and 10 PC were used as covariates. RESULTS We observed significant associations of heel BMD with birth weight (b = -0.020, P = 1.974 × 10-13), comparative body size (b = 0.020, P = 2.539 × 10-6) and comparative height size (b = -0.020, P = 5.892 × 10-11) at the age of ten years in total samples. In females, birth weight (b = -0.040, P = 2.870 × 10-24) and comparative height size (b = -0.040, P = 2.034 × 10-20) were statistically associated with adult heel BMD. In males, comparative body size appeared to be associated with adult heel BMD (b = 0.030, P = 1.590 × 10-7). CONCLUSION Our study results support the predictive effects of birth weight and growth parameters at the age of ten years on adult heel BMD. We also observed sex-specific association between adult heel BMD and growth parameters at the age of ten years.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
13
|
Herbert AJ, Williams AG, Lockey SJ, Erskine RM, Sale C, Hennis PJ, Day SH, Stebbings GK. Bone mineral density in high-level endurance runners: Part B-genotype-dependent characteristics. Eur J Appl Physiol 2021; 122:71-80. [PMID: 34550467 PMCID: PMC8748376 DOI: 10.1007/s00421-021-04789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Purpose Inter-individual variability in bone mineral density (BMD) exists within and between endurance runners and non-athletes, probably in part due to differing genetic profiles. Certainty is lacking, however, regarding which genetic variants may contribute to BMD in endurance runners and if specific genotypes are sensitive to environmental factors, such as mechanical loading via training. Method Ten single-nucleotide polymorphisms (SNPs) were identified from previous genome-wide and/or candidate gene association studies that have a functional effect on bone physiology. The aims of this study were to investigate (1) associations between genotype at those 10 SNPs and bone phenotypes in high-level endurance runners, and (2) interactions between genotype and athlete status on bone phenotypes. Results Female runners with P2RX7 rs3751143 AA genotype had 4% higher total-body BMD and 5% higher leg BMD than AC + CC genotypes. Male runners with WNT16 rs3801387 AA genotype had 14% lower lumbar spine BMD than AA genotype non-athletes, whilst AG + GG genotype runners also had 5% higher leg BMD than AG + GG genotype non-athletes. Conclusion We report novel associations between P2RX7 rs3751143 genotype and BMD in female runners, whilst differences in BMD between male runners and non-athletes with the same WNT16 rs3801387 genotype existed, highlighting a potential genetic interaction with factors common in endurance runners, such as high levels of mechanical loading. These findings contribute to our knowledge of the genetic associations with BMD and improve our understanding of why some runners have lower BMD than others. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04789-z.
Collapse
Affiliation(s)
- A J Herbert
- School of Health Sciences, Birmingham City University, Birmingham, UK.
| | - A G Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - S J Lockey
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - R M Erskine
- School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - C Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - P J Hennis
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - S H Day
- School of Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton, UK
| | - G K Stebbings
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
14
|
Herbert AJ, Williams AG, Lockey SJ, Erskine RM, Sale C, Hennis PJ, Day SH, Stebbings GK. Bone mineral density in high-level endurance runners: part A-site-specific characteristics. Eur J Appl Physiol 2021; 121:3437-3445. [PMID: 34510274 PMCID: PMC8571133 DOI: 10.1007/s00421-021-04793-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Physical activity, particularly mechanical loading that results in high-peak force and is multi-directional in nature, increases bone mineral density (BMD). In athletes such as endurance runners, this association is more complex due to other factors such as low energy availability and menstrual dysfunction. Moreover, many studies of athletes have used small sample sizes and/or athletes of varying abilities, making it difficult to compare BMD phenotypes between studies. METHOD The primary aim of this study was to compare dual-energy X-ray absorptiometry (DXA) derived bone phenotypes of high-level endurance runners (58 women and 45 men) to non-athletes (60 women and 52 men). Our secondary aim was to examine the influence of menstrual irregularities and sporting activity completed during childhood on these bone phenotypes. RESULTS Female runners had higher leg (4%) but not total body or lumbar spine BMD than female non-athletes. Male runners had lower lumbar spine (9%) but similar total and leg BMD compared to male non-athletes, suggesting that high levels of site-specific mechanical loading was advantageous for BMD in females only and a potential presence of reduced energy availability in males. Menstrual status in females and the number of sports completed in childhood in males and females had no influence on bone phenotypes within the runners. CONCLUSION Given the large variability in BMD in runners and non-athletes, other factors such as variation in genetic make-up alongside mechanical loading probably influence BMD across the adult lifespan.
Collapse
Affiliation(s)
- A J Herbert
- School of Health Sciences, Birmingham City University, Birmingham, UK.
| | - A G Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - S J Lockey
- Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - R M Erskine
- School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - C Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - P J Hennis
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - S H Day
- School of Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton, UK
| | - G K Stebbings
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
15
|
Hanna HWZ, Rizzo C, Abdel Halim RM, El Haddad HE, Salam R, El-Sayed Abou-Youssef H. Vitamin D status in Hashimoto's thyroiditis and its association with vitamin D receptor genetic variants. J Steroid Biochem Mol Biol 2021; 212:105922. [PMID: 34015387 DOI: 10.1016/j.jsbmb.2021.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is considered the predominant cause of hypothyroidism in iodine sufficient countries. The deficiency of 25-OH-vitamin D3 serum level and the variation of vitamin D receptor (VDR) gene were implicated in a number of autoimmune disorders. This study aimed to test the hypothesis linking between VDR FokI and BsmI variants and HT, in addition to explain their impact on 25-OH-vitamin D3 serum level. MATERIALS AND METHODS Cross sectional study included 160 hypothyroid subjects, 112 patients with HT and 48 hypothyroid non-HT controls. They were diagnosed based on anti-TPO Ab and or anti-TG Ab results. All cases were subjected to full history taking, thyroid ultrasound examination and a panel of assays (TSH, f.T3, f.T4, anti-TPO Ab, anti-TG Ab, calcium, alkaline phosphatase and phosphate). Serum 25-OH-vitamin D3 was assayed using HPLC-UV method. VDR variants (FokI and BsmI) were genotyped using real-time PCR. RESULTS FokI AA genotype was statistically higher in HT patients than control group (P value = 0.02) with subsequently higher serum 25-OH-vitamin D3 level in comparison to all other genotypes (P value = 0.039). Serum 25-OH-vitamin D3 level was statistically indifferent between HT and control group (P value = 0.223). A statistically significant increase in total thyroid volume was observed in HT group (P value = 0.002). CONCLUSION FokI AA genotype is more associated with HT in Egyptian patients compared to hypothyroid non-HT controls. Moreover, patients with FokI AA genotype have statistically higher levels of 25-OH-vitamin D3 suggesting VDR dysfunction even in patients expressing normal level of vitamin D.
Collapse
Affiliation(s)
- Hany William Z Hanna
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Cristiano Rizzo
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | | - Randa Salam
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
16
|
Molecular Portrait of an Athlete. Diagnostics (Basel) 2021; 11:diagnostics11061095. [PMID: 34203902 PMCID: PMC8232626 DOI: 10.3390/diagnostics11061095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Sequencing of the human genome and further developments in "omics" technologies have opened up new possibilities in the study of molecular mechanisms underlying athletic performance. It is expected that molecular markers associated with the development and manifestation of physical qualities (speed, strength, endurance, agility, and flexibility) can be successfully used in the selection systems in sports. This includes the choice of sports specialization, optimization of the training process, and assessment of the current functional state of an athlete (such as overtraining). This review summarizes and analyzes the genomic, proteomic, and metabolomic studies conducted in the field of sports medicine.
Collapse
|
17
|
Milanese C, Cavedon V, Corradini G, Rusciano A, Zancanaro C. Long-Term Patterns of Bone Mineral Density in an Elite Soccer Player. Front Physiol 2021; 12:631543. [PMID: 33716778 PMCID: PMC7947846 DOI: 10.3389/fphys.2021.631543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
Changes in bone mineral density (BMD) have been associated with association football (soccer) participation. Seasonal changes in BMD of soccer players have been proposed as well. However, previous investigations were based on short-term observations. Actually, longitudinal investigation of BMD in soccer players is lacking, possibly because of frequent inter-club transfer, changes in club policy or continued availability of the relevant facilities. Dual-energy X-ray Absorptiometry (DXA)-measured areal BMD (aBMD) was obtained during the competitive season in an elite soccer player along 10 consecutive years. Findings showed that (1) aBMD tends to increase with age, independently of body mass; (2) The right (preferred, kicking) leg has higher aBMD than the left (non-preferred, support) one; (3) Meaningful (i.e., >least significant change, LSC) changes in aBMD take place along the season; and (4) The off-season (transition) period has no effect on aBMD. Findings prompt for future research aimed at clarifying the long-term and seasonal patterns of bone characteristics in soccer in relation with age and type/dose of training. Season-around, long-term scrutiny of bone status in soccer players would help controlling for possible changes/asymmetries in bone mineralization/strength.
Collapse
Affiliation(s)
- Chiara Milanese
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Cavedon
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - Carlo Zancanaro
- Laboratory of Anthropometry and Body Composition, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Silva HH, Silva MRG, Cerqueira F, Tavares V, Medeiros R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes: review and future perspectives. J Sports Med Phys Fitness 2021; 62:418-434. [PMID: 33666074 DOI: 10.23736/s0022-4707.21.12020-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last few years, some inherited determinants have been associated with elite athletic performance, but its polygenic trait character has limited the correct definition of elite athlete's genomic profile. This qualitative descriptive study aims to summarise the current understanding about genetic and epigenetic factors in elite athletes, as well as their genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries. A narrative review of the literature across a broad cross-section of the elite athletes' genomic profile was undertaken. Elite performance relies on rare gene variants within a great interface between molecular, cellular and behavioural sport-related phenotypes and the environment, which is still poorly understood. ACTN3 rs1815739 and ACE I/D polymorphisms appear to be associated to specific sprint phenotypes and influence the athletic status, i.e., the rs1815739 variant is more influential to 200-m performance and the ACE ID polymorphism is more involved in the longer, 400-m sprint performance. Generally, athletes show endurance-based sports characteristics or power-based sports characteristics, but some studies have reported some genes associations to both sports-based characteristics. Furthermore, genetic studies with larger cohorts of single-sport athletes might be preferable than studies combining athletes of different sports, given the existence of distinct athlete profiles and sport demands. Athletic performance may be influenced by the serotonergic pathway and the potential injury risk (namely stress fracture) might be associated to a genetic predisposition associated to the mechanical loading from the intense physical exercise. The study of gene variants associated to sex and ethnicity-related to athletic performance needs further investigation. The combination of genome-wide association studies addressing the genetic architecture of athletes and the subsequent replication and validation studies might for additional genetic data is mandatory.
Collapse
Affiliation(s)
- Hugo-Henrique Silva
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Porto, Portugal - .,União Desportiva Oliveirense, Senior Rink-Hockey Team, Oliveira de Azeméis, Portugal - .,Portuguese Ministry of Education, Lisbon, Portugal -
| | - Maria-Raquel G Silva
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.,CIAS-Research Centre for Anthropology and Health - Human Biology, Health and Society, University of Coimbra, Coimbra, Portugal.,Comprehensive Health Research Centre-Group of Sleep, Chronobiology and Sleep Disorders-Nova Medical School, University of Lisbon, Lisbon, Portugal.,FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal
| | - Fátima Cerqueira
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.,FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Valéria Tavares
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,FMUP- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Medeiros
- FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal.,LPCC, Research Department - Portuguese League Against Cancer (LPPC - NRN), Porto, Portugal.,FMUP- Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Schwarz I, Houck DA, Shah V, Jolly AJ, Lindsay A, Bravman JT, Frank RM. Bone and body characteristics of freestyle and nonfreestyle skiers. J Sports Med Phys Fitness 2021; 62:74-80. [PMID: 33555668 DOI: 10.23736/s0022-4707.21.12055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Freestyle skiers must optimize their aerial performance by maintaining the strength and coordination to propel themselves in the air and adapt to landings and take-offs on uneven surfaces. The purpose of this study is to investigate the differences in areal bone mineral density (aBMD) and body composition in freestyle skiers and nonfreestyle skiing controls. HYPOTHESIS We hypothesized that the unique demands and summation of forces experienced by freestyle athletes would manifest as greater femoral neck aBMD, lower percent body fat, and lower BMI than nonfreestyle skiing controls. LEVEL OF EVIDENCE Level 3, Retrospective Cohort Study. METHODS 18 freestyle skiers (14M 4F, [27.56 ± 5.22 years]) and 15 controls (7M 8F, [26.93 ± 3.54 years]) were measured with dual energy X-ray absorptiometry (DXA) to determine total body composition, hip and lumbar spine aBMD, and bone mineral composition (BMC). Height and weight were measured with an in-office stadiometer and scale. Questionnaires were used to determine physical activity and pertinent medical history. Between-group variations were analyzed with an analysis of variance (ANOVA) and stratified by sex. RESULTS Percent body fat, hip and lumbar spine aBMD, BMC, and area were all similar between freeski and nonfreeski athletes (p<0.05 for all). BMI was significantly lower in male freeski athletes (23.97kg/m2, 95% CI [22.75-25.18]) compared to nonfreestyle skiing controls (26.64kg/m2, 95% CI [24.43-28.86]) (p=0.03). CONCLUSIONS Freestyle skiers have a lower BMI than nonfreestyle skiers. All skiers in this study has similar percent body fat, aBMD, and BMC. This pilot study supports that there are unique musculoskeletal adaptations based on type of skiing. CLINICAL RELEVANCE Skiers endure a variety of intense physical forces yet remain understudied despite high orthopedic injury rates. This study serves to broaden the current sports health literature and explore the physical demands and subsequent physiology of freestyle skiers.
Collapse
Affiliation(s)
- Ilona Schwarz
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA -
| | - Darby A Houck
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Viral Shah
- Barbara Davis Center for Diabetes, University of Colorado, Denver, CO, USA
| | - Austin J Jolly
- Division of Renal Diseases and Hypertension, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Adam Lindsay
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan T Bravman
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachel M Frank
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
20
|
Varley I, Stebbings G, Williams AG, Day S, Hennis P, Scott R, Grazette N, Herbert AJ. An investigation into the association of bone characteristics and body composition with stress fracture in athletes. J Sports Med Phys Fitness 2021; 61:1490-1498. [PMID: 33480513 DOI: 10.23736/s0022-4707.21.11871-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of the study was to establish the bone and body composition characteristics of high-level athletes with and without a history of stress fracture injury. METHODS Overall, 279 high-level athletes (212 men, 67 women) (age 28.0±9.2 years; body mass 75.0±17.4 kg; height 1.78±0.10 m) and 112 non-athletic controls (60 women, 52 men) 36.2±15.0 years; 70.9±12.9 kg; 1.71±0.10 m) were assessed by DXA to establish their bone mineral density and content, body fat and lean mass. Athletes completed a questionnaire detailing their stress fracture history. RESULTS There were no differences in whole-body bone mineral density (men 1.41±0.12 g/cm2, women 1.19±0.09 g/cm2), bone mineral content (men 3709±626 g, women 2263±290 g), body fat (men 16.3±5.0%,women 23.0±4.6%) and lean mass (men 65.4±9.9 kg, women 38.7±3.6 kg) between athletes with a history of stress fracture (34 men, 16 women) and those without (176 men, 40 women). CONCLUSIONS DXA derived bone and body composition characteristics were not independent risk factors for stress fracture injury in high-level athletes. This study in a large cohort of high-level athletes provides normative bone and body composition values that can be used as a benchmark for researchers and applied practitioners.
Collapse
Affiliation(s)
- Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham, UK -
| | - Georgina Stebbings
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alun G Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - Stephen Day
- University of Wolverhampton School of Medicine and Clinical Practice, Wolverhampton, UK
| | - Phil Hennis
- Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Reece Scott
- Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Neval Grazette
- Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Adam J Herbert
- Department of Sport and Exercise, Birmingham City University, Birmingham, UK
| |
Collapse
|
21
|
Kraemer WJ, Caldwell LK, Post EM, DuPont WH, Martini ER, Ratamess NA, Szivak TK, Shurley JP, Beeler MK, Volek JS, Maresh CM, Todd JS, Walrod BJ, Hyde PN, Fairman C, Best TM. Body Composition in Elite Strongman Competitors. J Strength Cond Res 2020; 34:3326-3330. [PMID: 33235016 DOI: 10.1519/jsc.0000000000003763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kraemer, WJ, Caldwell, LK, Post, EM, DuPont, WH, Martini, ER, Ratamess, NA, Szivak, TK, Shurley, JP, Beeler, MK, Volek, JS, Maresh, CM, Todd, JS, Walrod, BJ, Hyde, PN, Fairman, C, and Best, TM. Body composition in elite strongman competitors. J Strength Cond Res 34(12): 3326-3330, 2020-The purpose of this descriptive investigation was to characterize a group of elite strongman competitors to document the body composition of this unique population of strength athletes. Data were collected from eligible competitors as part of a health screening program conducted over 5 consecutive years. Imaging was acquired using dual-energy x-ray absorptiometry (DXA), providing total body measures of fat mass, lean mass, and bone mineral content (BMC). Year to year, testing groups showed a homogenous grouping of anthropometric, body composition, and bone density metrics. Composite averages were calculated to provide an anthropometric profile of the elite strongman competitor (N = 18; mean ± SD): age, 33.0 ± 5.2 years; body height, 187.4 ± 7.1 cm; body mass, 152.9 ± 19.3 kg; body mass index, 43.5 ± 4.8 kg·m; fat mass, 30.9 ± 11.1 kg; lean mass, 118.0 ± 11.7 kg, body fat, 18.7 ± 6.2%, total BMC, 5.23 ± 0.41 kg, and bone mineral density, 1.78 ± 0.14 g·cm. These data demonstrate that elite strongman competitors are among the largest human male athletes, and in some cases, they are at the extreme limits reported for body size and structure. Elite strongman competitors undergo a high degree of mechanical stress, providing further insight into the potent role of physical training in mediating structural remodeling even into adulthood. Such data provide a glimpse into a unique group of competitive athletes pushing the limits not only of human performance but also of human physiology.
Collapse
Affiliation(s)
- William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Lydia K Caldwell
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Emily M Post
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - William H DuPont
- School of Health Sciences-Biomedical Sciences, Quinnipiac University, Hamden, Connecticut
| | - Emily R Martini
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Nicholas A Ratamess
- Department of Health and Exercise Science, the College of New Jersey, Ewing, New Jersey
| | - Tunde K Szivak
- School of Health Sciences, Merrimack College, North Andover, Massachusetts
| | - Jason P Shurley
- Department of Health, Physical Education, Recreation and Coaching, University of Wisconsin-Whitewater, Whitewater, Wisconsin
| | - Matthew K Beeler
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Carl M Maresh
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Janice S Todd
- Department of Kinesiology and Health Education, Stark Center for Physical Culture and Sports, University of Texas, at Austin, Austin, Texas
| | - Bryant J Walrod
- The Jameson Crane Sports Medicine Institute, OSU Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Parker N Hyde
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Ciaran Fairman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; and
| | - Thomas M Best
- Division of Sports Medicine, Department of Orthopedics, Miller School of Medicine, University of Miami Sports Medicine Institute, Coral Gables, Florida
| |
Collapse
|
22
|
Hillis DA, Yadgary L, Weinstock GM, Pardo-Manuel de Villena F, Pomp D, Fowler AS, Xu S, Chan F, Garland T. Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics 2020; 216:781-804. [PMID: 32978270 PMCID: PMC7648575 DOI: 10.1534/genetics.120.303668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans and laboratory rodents. In the "High Runner" selection experiment, four replicate lines of Mus domesticus were bred for high voluntary wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic ability, including Sorl1, Dach1, and Cdh10 Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing candidate genes that may explain phenotypic changes observed in previous studies.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California 92521
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Alexandra S Fowler
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| |
Collapse
|
23
|
Bone Mineral Reference Values for Athletes 11 to 20 Years of Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144930. [PMID: 32650565 PMCID: PMC7400360 DOI: 10.3390/ijerph17144930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Objectives. Training for sport is associated with the development of bone minerals, and the need for reference data based on athletes is often indicated. The purpose of this study was to develop a reference for bone mineral density (BMD) and content (BMC) specific for youth athletes of both sexes participating in several sports. Methods DEXA (dual energy X-ray absorptiometry) was used for total body measurements of bone minerals in 1385 athletes 11 to 20 years, 1019 males and 366 females. The athletes were training in several sports at Hungarian academies. Reference values for total bone mineral density and bone mineral content, and also BMD excluding the head (total body less head, TBLH) were developed using the LMS chartmaker pro version 2.3. Results. The centile distributions for BMD and BMC of the athletes differed significantly from those of the age- and sex-specific references for the general population. The youth athletes had higher BMD and BMC than those of the reference for the general population. Conclusion. The potential utility of the DEXA reference for male and female youth athletes may assist in monitoring changes in the BMC and BMD associated with normal growth and maturation, and perhaps more importantly, may be useful in monitoring changes specific to different phases of sport-specific training protocols.
Collapse
|
24
|
Ryan-Moore E, Mavrommatis Y, Waldron M. Systematic Review and Meta-Analysis of Candidate Gene Association Studies With Fracture Risk in Physically Active Participants. Front Genet 2020; 11:551. [PMID: 32612634 PMCID: PMC7308497 DOI: 10.3389/fgene.2020.00551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Fractures are common in physically active populations and genetic differences may mediate injury risk. Objective: To meta-analyse the pooled results of candidate gene association studies with non-osteoporotic fracture risk in physically active humans. Methods: Systematic searching of databases returned 11 eligible studies published in English. Pooled odds ratios (ORs) with 95% confidence intervals (CI) were produced using allele contrast, recessive and homozygote contrast meta-analysis models to evaluate associations of risk alleles in the COL1A1 (rs1800012), COL2A1 (rs412777), CTR (rs1801197), ESR1 (rs2234693 and rs9340799) LRP5 (rs3736228), VDR (rs10735810, rs7975232, rs1544410, and rs731236) genes with fracture incidence. Results: Eligible study quality was generally low (7/11) and no significant overall effect was found for any genetic variant with any comparison model (p > 0.05). A trivial reduction in fracture risk was found for female participants with the COL1A1 Sp1 (rs1800012) T allele (OR = 0.48, 95% CI = 0.25–0.91, p = 0.03, d = –0.18). Conclusions: No overall effect was found from the pooled results of included genetic variants on fracture risk in physically active participants. The COL1A1 Sp1 rs1800012 T allele may reduce fracture risk in physically active females but further high-quality research with sex-specific analysis is required. Trial Registration: (PROSPERO; CRD42018115008).
Collapse
Affiliation(s)
- Edward Ryan-Moore
- Faculty of Sport, Health and Applied Sciences, St Mary's University, London, United Kingdom.,Fulham Football Club, Sports Science and Medicine, London, United Kingdom
| | - Yiannis Mavrommatis
- Faculty of Sport, Health and Applied Sciences, St Mary's University, London, United Kingdom.,Nell Health Ltd., Genetics & Nutrition, London, United Kingdom
| | - Mark Waldron
- Research Centre in Applied Sports, Technology, Exercise and Medicine, Swansea University, Swansea, United Kingdom.,School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
25
|
Zagrodna A, Ksia Żek A, Słowińska-Lisowska M, Łaczmański Ł. Calcium-Sensing Receptor Gene Polymorphisms (CASRV1 and CASRV2) and the Physical Activity Level of Men in Lower Silesia, Poland. Front Genet 2020; 11:325. [PMID: 32373159 PMCID: PMC7186392 DOI: 10.3389/fgene.2020.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Calcium-sensing receptors (CASR) are a dimeric family of C-class G-protein-coupled receptors that play a crucial role in bone and mineral metabolism by regulating parathyroid hormone (PTH) secretion, skeletal development, and urinary Ca2+ excretion. Genetic factors mainly impact bone mineral density (BMD). However, many variable factors may affect bone health, including physical activity. The aim of our study was to investigate the potential associations between calcium-sensing receptor gene polymorphisms (CASRV1 and CASRV2) and the level of physical activity in adult males from Lower Silesia, a region in the south of Poland. A total of 428 adult male inhabitants of Lower Silesia were included in the study. Their physical activity was evaluated using the International Physical Activity Questionnaire. The CASRV1 (rs 1801725, G>T, A986S) and CASRV2 (rs 761486, T>G, non-coding region) polymorphisms were determined using polymerase chain reaction (PCR) and mini-sequencing. The polymorphisms were identified with GeneScan software ver. 3.1.2. We did not observe any statistically significant differences between the total energy expenditure (total MET) and the CASRV1 and CASRV2 polymorphisms. We did not find any association between the level of physical activity and the frequency of genotypes at the polymorphic locus of the calcium-sensing receptor genes CASRV1 and CASRV2. We found that the number of hours the subjects spent in a sitting position was unrelated to the genotypes at the polymorphic locus of the calcium-sensing receptor gene CASRV1. Based on our studies, we concluded that there were no associations between CASR and physical activity in the men inhabiting Lower Silesia in Poland. Our results do not suggest any influence of the assessed genetic factors in the population variability of the level of physical activity of adults.
Collapse
Affiliation(s)
- Aleksandra Zagrodna
- Department of the Biological and Motor Basis of Sport, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Anna Ksia Żek
- Department of the Biological and Motor Basis of Sport, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Małgorzata Słowińska-Lisowska
- Department of the Biological and Motor Basis of Sport, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
26
|
Rahman R, Shannon BA, Ficke JR. Knee Scooter–Related Injuries: A Survey of Foot and Ankle Orthopedic Surgeons. FOOT & ANKLE ORTHOPAEDICS 2020; 5:2473011420914561. [PMID: 35097371 PMCID: PMC8697236 DOI: 10.1177/2473011420914561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Knee scooters (“scooters”) are a commonly used device to facilitate postoperative adherence to weightbearing restrictions. Although high rates of falls have been reported, little is known about injuries related to scooter use. Methods: We analyzed survey responses from 316 of 2046 members (15%) of the American Orthopaedic Foot & Ankle Society in May-June 2019 describing (1) frequency of scooter recommendation; (2) indications for which they recommended scooters; (3) characteristics of patients for whom they recommended scooters; (4) prevalence, anatomic locations, mechanisms, and sequelae of scooter-related injuries; and (5) characteristics of patients with scooter-related injuries. Descriptive statistics and χ2 goodness-of-fit tests were performed (alpha = .05). Results: Mean frequency with which respondents recommended scooters in particular was 69%. Respondents most often recommended scooters after hindfoot arthrodesis (97% [305/316]), ankle arthrodesis (96% [302/316]), and for total nonweightbearing (64% [202/316]) and to patients who were overweight (vs obese) or aged 45-75 years. Mean prevalence of scooter-related injuries was 2.5%. The most common injury mechanism was making a sharp turn (reported by 62% [103/166]). Thirty-four percent (56/166) of respondents with injured patients said patients underwent surgery to treat scooter-related injuries. Patients with scooter-related injuries were more often women, >44 years old, obese, and sedentary. Conclusion: Scooters were commonly recommended postoperatively, most often for total nonweightbearing after hindfoot or ankle arthrodesis, and most often in overweight adults or those aged 45-75 years. Mean reported prevalence of scooter-related injuries was 2.5%. Female sex, older age, obesity, and sedentary lifestyle were associated with scooter-related injury. Level of Evidence: Level IV, retrospective case series.
Collapse
Affiliation(s)
- Rafa Rahman
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett A. Shannon
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R. Ficke
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|