1
|
Sumi D, Okazaki K, Goto K. Gastrointestinal function following endurance exercise under different environmental temperatures. Eur J Appl Physiol 2024; 124:1601-1608. [PMID: 38172425 DOI: 10.1007/s00421-023-05387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE We determined the effects of different environmental temperatures on exercise-induced gastrointestinal (GI) damage and delayed gastric emptying (GE) rate. METHODS Eleven trained males completed three trials on different days, consisting of (1) exercise in a thermoneutral environment (CON, 23 °C), (2) exercise in a hot environment (HOT, 35 °C), and (3) exercise in a cold environment (COLD, 10 °C). The subjects performed high-intensity interval-type endurance exercises in all trials. Blood intestinal fatty acid binding protein (I-FABP) levels was determine before and after exercise. We evaluated Tmax (time when the 13C-excretion/h reached a maximum level) as an indication of the GE rate during post-exercise. RESULTS Rectal temperature during exercise was significantly higher (P < 0.001) in the HOT (38.7 ± 0.3 °C) trial compared with the CON (38.2 ± 0.3 °C) and COLD (38.2 ± 0.3 °C) trials, with no significant difference between the CON and COLD trials. Plasma I-FABP level after exercise (relative to the pre-exercise level) were significantly greater (P = 0.005) in the HOT trial (92.9 ± 69.6%) than in the CON (37.2 ± 31.6%) and COLD (37.6 ± 41.8%) trials. However, there was no significant difference between the CON and COLD trials. Moreover, the Tmax was delayed significantly (P = 0.006) in the HOT trial compared with the CON and COLD trials, with no significant difference between the CON and COLD trials. CONCLUSION GI function following endurance exercise was similar between thermoneutral and cold environments, while endurance exercise in a hot environment exacerbated GI function compared with thermoneutral and cold environments.
Collapse
Affiliation(s)
- Daichi Sumi
- Institute of Sport Science, ASICS Corporation, Kobe, Japan
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazunobu Okazaki
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
2
|
The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients 2023; 15:nu15010216. [PMID: 36615873 PMCID: PMC9823684 DOI: 10.3390/nu15010216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of heat acclimation on gastrointestinal (GI) damage and the gastric emptying (GE) rate following endurance exercise in a hot environment. Fifteen healthy men were divided into two groups: endurance training in hot (HOT, 35 °C, n = 8) or cool (COOL, 18 °C, n = 7) environment. All subjects completed 10 days of endurance training (eight sessions of 60 min continuous exercise at 50% of the maximal oxygen uptake (V·O2max). Subjects completed a heat stress exercise tests (HST, 60 min exercise at 60% V·O2max) to evaluate the plasma intestinal fatty acid-binding protein (I-FABP) level and the GE rate following endurance exercise in a hot environment (35 °C) before (pre-HST) and after (post-HST) the training period. We assessed the GE rate using the 13C-sodium acetate breath test. The core temperature during post-HST exercise decreased significantly in the HOT group compared to the pre-HST (p = 0.004) but not in the COOL group. Both the HOT and COOL groups showed exercise-induced plasma I-FABP elevations in the pre-HST (p = 0.002). Both groups had significantly attenuated exercise-induced I-FABP elevation in the post-HST. However, the reduction of exercise-induced I-FABP elevation was not different significantly between both groups. GE rate following HST did not change between pre- and post-HST in both groups, with no significant difference between two groups in the post-HST. Ten days of endurance training in a hot environment improved thermoregulation, whereas exercise-induced GI damage and delay of GE rate were not further attenuated compared with training in a cool environment.
Collapse
|
3
|
Kung S, Vakula MN, Kim Y, England DL, Bergeson J, Bressel E, Lefevre M, Ward R. No effect of a dairy-based, high flavonoid pre-workout beverage on exercise-induced intestinal injury, permeability, and inflammation in recreational cyclists: A randomized controlled crossover trial. PLoS One 2022; 17:e0277453. [PMID: 36445874 PMCID: PMC9707743 DOI: 10.1371/journal.pone.0277453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Submaximal endurance exercise has been shown to cause elevated gastrointestinal permeability, injury, and inflammation, which may negatively impact athletic performance and recovery. Preclinical and some clinical studies suggest that flavonoids, a class of plant secondary metabolites, may regulate intestinal permeability and reduce chronic low-grade inflammation. Consequently, the purpose of this study was to determine the effects of supplemental flavonoid intake on intestinal health and cycling performance. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled crossover trial was conducted with 12 cyclists (8 males and 4 females). Subjects consumed a dairy milk-based, high or low flavonoid (490 or 5 mg) pre-workout beverage daily for 15 days. At the end of each intervention, a submaximal cycling trial (45 min, 70% VO2max) was conducted in a controlled laboratory setting (23°C), followed by a 15-minute maximal effort time trial during which total work and distance were determined. Plasma samples were collected pre- and post-exercise (0h, 1h, and 4h post-exercise). The primary outcome was intestinal injury, assessed by within-subject comparison of plasma intestinal fatty acid-binding protein. Prior to study start, this trial was registered at ClinicalTrials.gov (NCT03427879). RESULTS A significant time effect was observed for intestinal fatty acid binding protein and circulating cytokines (IL-6, IL-10, TNF-α). No differences were observed between the low and high flavonoid treatment for intestinal permeability or injury. The flavonoid treatment tended to increase cycling work output (p = 0.051), though no differences were observed for cadence or total distance. DISCUSSION Sub-chronic supplementation with blueberry, cocoa, and green tea in a dairy-based pre-workout beverage did not alleviate exercise-induced intestinal injury during submaximal cycling, as compared to the control beverage (dairy-milk based with low flavonoid content).
Collapse
Affiliation(s)
- Stephanie Kung
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Michael N. Vakula
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Youngwook Kim
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Derek L. England
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Janet Bergeson
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Eadric Bressel
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, United States of America
| | - Michael Lefevre
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
| | - Robert Ward
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
4
|
Repeated-Sprint Exercise in the Heat Increases Indirect Markers of Gastrointestinal Damage in Well-Trained Team-Sport Athletes. Int J Sport Nutr Exerc Metab 2022; 32:153-162. [PMID: 35130515 DOI: 10.1123/ijsnem.2021-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Athletes engaged in repeated-sprint training in the heat can be at an increased risk of gastrointestinal ischemia and damage in response to a redistribution of blood to working skeletal muscles and the skin. This study investigated the effects of repeated sprinting in hot and cool conditions on markers of gastrointestinal damage. METHODS Twenty-five, well-trained, nonheat acclimated male team-sport athletes completed a five-session, repeated-sprint training regimen over 7 days in either HOT (40 °C and 40% relative humidity [RH]) or COOL (20 °C and 40% RH) conditions. Participants underwent a 20-min warm-up and four sets of 5 × 6-s maximal cycling sprints, with 24-s rest and 5-min recovery between sets. Venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for intestinal fatty acid binding protein, lipopolysaccharide binding protein, soluble CD14, and heat-shock protein. RESULTS Intestinal fatty acid binding protein concentrations were significantly increased (p < .004) postexercise (593 and 454 pg/ml) and 1 hr postexercise (466 and 410 pg/ml) on both Days 1 and 5 in HOT. Soluble CD14 increased by 398 and 308 ng/ml postexercise (p = .041), and lipopolysaccharide binding protein increased by 1,694 ng/ml postexercise on Day 1 in HOT (p < .05) and by 1,520 ng/ml on Day 5 in COOL (p = .026). Core and skin temperature, rating of perceived exertion, and thermal sensation were higher (p < .05) in HOT on Days 1 and 5 during sprinting. CONCLUSIONS Repeated sprinting in the heat induced greater thermal strain and mild changes in gastrointestinal damage, likely attributable to the combination of environmental conditions and maximal-intensity exercise.
Collapse
|
5
|
Osborne JO, Stewart IB, Borg DN, Beagley KW, Buhmann RL, Minett GM. Short-term heat acclimation preserves knee extensor torque but does not improve 20 km self-paced cycling performance in the heat. Eur J Appl Physiol 2021; 121:2761-2772. [PMID: 34148124 PMCID: PMC8416835 DOI: 10.1007/s00421-021-04744-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023]
Abstract
Purpose This study investigated the effect of 5 days of heat acclimation training on neuromuscular function, intestinal damage, and 20 km cycling (20TT) performance in the heat. Methods Eight recreationally trained males completed two 5-day training blocks (cycling 60 min day−1 at 50% peak power output) in a counter-balanced, cross-over design, with a 20TT completed before and after each block. Training was conducted in hot (HA: 34.9 ± 0.7 °C, 53 ± 4% relative humidity) or temperate (CON: 22.2 ± 2.6 °C, 65 ± 8% relative humidity) environment. All 20TTs were completed in the heat (35.1 ± 0.5 °C, 51 ± 4% relative humidity). Neuromuscular assessment of knee extensors (5 × 5 s maximum voluntary contraction; MVC) was completed before and after each 20TT and on the first and last days of each training block. Results MVC torque was statistically higher after 5 days of HA training compared to CON (mean difference = 14 N m [95% confidence interval; 6, 23]; p < 0.001; d = 0.77). However, 20TT performance after 5 days of HA training was not statistically different to CON, with a between-conditions mean difference in the completion time of 68 s [95% confidence interval; − 9, 145] (p = 0.076; d = 0.35). Conclusion Short-term heat acclimation training may increase knee extensor strength without changes in central fatigue or intestinal damage. Nevertheless, it is insufficient to improve 20 km self-paced cycling performance in the heat compared to workload-matched training in a temperate environment. These data suggest that recreationally trained athletes gain no worthwhile performance advantage from short-term heat-training before competing in the heat. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04744-y.
Collapse
Affiliation(s)
- John O Osborne
- School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway. .,School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Ian B Stewart
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N Borg
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Robert L Buhmann
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | - Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
6
|
Effect of Exercising in the Heat on Intestinal Fatty Acid-Binding Protein, Endotoxins, and Lipopolysaccharide-Binding Protein Markers in Trained Athletic Populations: A Systematic Literature Review. Int J Sport Nutr Exerc Metab 2021; 31:359-368. [PMID: 34039771 DOI: 10.1123/ijsnem.2021-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022]
Abstract
Along with digestion and absorption of nutrients, the gastrointestinal epithelium acts as a primary intestinal defense layer, preventing luminal pathogens from entering the circulation. During exercise in the heat, epithelial integrity can become compromised, allowing bacteria and bacterial endotoxins to translocate into circulation, triggering a systemic inflammatory response and exacerbating gastrointestinal damage. While this relationship seems clear in the general population in endurance/ultraendurance exercise, the aim of this systematic review was to evaluate the effect of exercise in the heat on blood markers of gastrointestinal epithelial disturbance in well-trained individuals. Following the 2009 Preferred Reporting Items for Systematic Reviewed and Meta-Analyses guidelines, five electronic databases were searched for appropriate research, and 1,885 studies were identified. Five studies met the inclusion criteria and were subject to full methodological appraisal by two reviewers. Critical appraisal of the studies was conducted using the McMasters Critical Review Form. The studies investigated changes in markers of gastrointestinal damage (intestinal fatty acid-binding protein, endotoxin, and/or lipopolysaccharide-binding protein) following acute exercise in warm to hot conditions (≥ 30 °C) and included trained or well-trained participants with direct comparisons to a control temperate condition (≤ 22 °C). The studies found that prolonged submaximal and strenuous exercise in hot environmental conditions can acutely increase epithelial disturbance compared with exercise in cooler conditions, with disturbances not being clinically relevant. However, trained and well-trained populations appear to tolerate exercise-induced gastrointestinal disturbance in the heat. Whether this is an acquired tolerance related to regular training remains to be investigated.
Collapse
|
7
|
Running at Increasing Intensities in the Heat Induces Transient Gut Perturbations. Int J Sports Physiol Perform 2020; 16:704-710. [PMID: 33361496 DOI: 10.1123/ijspp.2019-0973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress. METHODS A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min-1·kg-1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid-binding protein). RESULTS The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 μg·mL-1, 2.4-8.4; mean, 95% confidence interval, P < .001), 32% (4.6 μg·mL-1, 1.8-7.4; P = .002), and 30% (3.0 μg·mL-1, 0.03-5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL-1, 0.1-0.4; P = .011). Intestinal fatty acid-binding protein increased 43% (2.1 ng·mL-1, 0.1-4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition. CONCLUSIONS Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid-binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.
Collapse
|
8
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|
9
|
Osborne JO, Stewart IB, Beagley KW, Borg DN, Minett GM. Acute glutamine supplementation does not improve 20-km self-paced cycling performance in the heat. Eur J Appl Physiol 2019; 119:2567-2578. [PMID: 31565753 DOI: 10.1007/s00421-019-04234-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/18/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The premise of this study was to investigate the effect of acute glutamine supplementation on 20 km time trial cycling performance in the heat, neuromuscular function, inflammation and endotoxemia. METHODS Twelve cyclists completed two, 20-km time trials (20TT) in 35 °C (50% relative humidity). Participants ingested either glutamine (GLUT; 0.9 g kg-1 fat-free mass) or a placebo (CON) 60 min before each 20TT. Physiological and perceptual measures were recorded during each 20TT, and neuromuscular function assessed pre- and post-exercise. Venous blood was analysed for endotoxins, markers of gut damage (inflammatory fatty acid binding protein; I-FABP) and inflammatory cytokines (interleukin-6, IL-6; tumour necrosis factor-alpha, TNF-α). Data were analysed using linear mixed models in a Bayesian framework. RESULTS 20TT in the heat increased I-FABP and elevated inflammatory cytokines (IL-6 and TNF-α) compared to pre-exercise values but did not result in endotoxemia. Completion time was not statistically different between conditions (mean difference [95% credible interval] = 11 s [- 23, 44]). Relative to CON, GLUT did not alter any physiological or perceptual measures during the 20TT. CONCLUSION Glutamine supplementation does not improve 20TT performance in the heat or preserve neuromuscular function when compared to a placebo. These findings suggest that glutamine is not an ergogenic aid or prophylactic intervention for heat-induced gut damage during short-duration self-paced exercise in hot environments.
Collapse
Affiliation(s)
- John O Osborne
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Ian B Stewart
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N Borg
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|