1
|
Jiao XF, Gao Y, Ni R, Zhao WY, Zhao C, Lu X, Zhang HF, Gao W, Luo L. Low serum HSPA12B levels are associated with an increased risk of sarcopenia in a Chinese population of older adults. Cell Stress Chaperones 2025; 30:100-108. [PMID: 39983811 PMCID: PMC11909431 DOI: 10.1016/j.cstres.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by progressive loss of muscle mass and function. Heat shock protein (HSP) A12B is essential for angiogenesis and endothelial function. However, the association of HSPA12B levels with sarcopenia remains unclear. A total of 936 community-dwelling elderly people were recruited, and serum HSPA12B was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. We found that serum HSPA12B levels in patients with sarcopenia (median [interquartile range] = 182.15 [137.58-225.86] ng/mL) were lower than those in elderly people without sarcopenia (228.96 [193.03-292.93] ng/mL, P < 0.001). Receiver operating characteristic curve analysis indicated that the optimal cut-off value of serum HSPA12B level for predicting sarcopenia was 185.50 ng/mL, with a sensitivity of 52.6% and a specificity of 80.8% (area under curve = 0.742, 95% confidence interval [CI] = 0.711-0.772, P < 0.001). Moreover, serum HSPA12B concentration was positively correlated with ASMI (r = 0.354, P < 0.001), grip strength (r = 0.381, P < 0.001), and gait speed (r = 0.169, P < 0.001). Multivariate logistic regression analysis showed that decreased serum HSPA12B levels (<185.50 ng/mL) were a risk factor for increased risk of sarcopenia (adjusted odds ratio = 4.335, 95% CI = 3.136-5.993, P < 0.001). In addition, serum HSPA12B level was also positively correlated with serum levels of angiogenesis markers, vascular endothelial growth factor (r = 0.080, P = 0.014), and angiopoietin-1 (r = 0.108, P = 0.001). In summary, our results indicate that low serum HSPA12B level is associated with an increased risk of sarcopenia in the elderly, suggesting a potential role of HSPA12B in the development of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Gao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Ni
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen-Ya Zhao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
2
|
Orsatti FL, de Queiroz Freitas AC, Borges AVBE, Santato AS, de Oliveira Assumpção C, Souza MVC, da Silva MV, Orsatti CL. Unveiling the role of exercise in modulating plasma heat shock protein 27 levels: insights for exercise immunology and cardiovascular health. Mol Cell Biochem 2025; 480:1381-1401. [PMID: 39172352 DOI: 10.1007/s11010-024-05089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, primarily driven by atherosclerosis, a chronic inflammatory condition contributing significantly to fatalities. Various biological determinants affecting cardiovascular health across different age and sex groups have been identified. In this context, recent attention has focused on the potential therapeutic and preventive role of increasing circulating levels of heat shock protein 27 (plasma HSP27) in combating atherosclerosis. Plasma HSP27 is recognized for its protective function in inflammatory atherogenesis, offering promising avenues for intervention and management strategies against this prevalent cardiovascular ailment. Exercise has emerged as a pivotal strategy in preventing and managing cardiovascular disease, with literature indicating an increase in plasma HSP27 levels post-exercise. However, there is limited understanding of the impact of exercise on the release of HSP27 into circulation. Clarifying these aspects is crucial for understanding the role of exercise in modulating plasma HSP27 levels and its potential implications for cardiovascular health across diverse populations. Therefore, this review aims to establish a more comprehensive understanding of the relationship between plasma HSP27 and exercise.
Collapse
Affiliation(s)
- Fábio Lera Orsatti
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil.
| | - Augusto Corrêa de Queiroz Freitas
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Anna Victória Bernardes E Borges
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | - Alexia Souza Santato
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Claudio de Oliveira Assumpção
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Markus Vinicius Campos Souza
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | | |
Collapse
|
3
|
Alcaráz N, Salcedo-Tello P, González-Barrios R, Torres-Arciga K, Guzmán-Ramos K. Underlying Mechanisms of the Protective Effects of Lifestyle Factors On Age-Related Diseases. Arch Med Res 2024; 55:103014. [PMID: 38861840 DOI: 10.1016/j.arcmed.2024.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The rise in life expectancy has significantly increased the occurrence of age-related chronic diseases, leading to escalating expenses for both society and individuals. Among the main factors influencing health and lifespan, lifestyle takes a forefront position. Specifically, nutrition, mental activity, and physical exercise influence the molecular and functional mechanisms that contribute to the prevention of major age-related diseases. Gaining deeper insights into the mechanisms that drive the positive effects of healthy lifestyles is valuable for creating interventions to prevent or postpone the development of chronic degenerative diseases. This review summarizes the main mechanisms that underlie the positive effect of lifestyle factors in counteracting the major age-related diseases involving brain health, musculoskeletal function, cancer, frailty, and cardiovascular diseases, among others. This knowledge will help to identify high-risk populations for targeted intervention trials and discover new biomarkers associated with healthy aging.
Collapse
Affiliation(s)
- Nicolás Alcaráz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Salcedo-Tello
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México
| | - Karla Torres-Arciga
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Mexico State, Mexico.
| |
Collapse
|
4
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Michel M, Plotkin DL, Mattingly ML, Mobley B, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. Aging (Albany NY) 2024; 16:6631-6651. [PMID: 38643460 PMCID: PMC11087122 DOI: 10.18632/aging.205751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
The skeletal muscle proteome alterations to aging and resistance training have been reported in prior studies. However, conventional proteomics in skeletal muscle typically yields wide protein abundance ranges that mask the detection of lowly expressed proteins. Thus, we adopted a novel deep proteomics approach whereby myofibril (MyoF) and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS). Specifically, we investigated MyoF and non-MyoF proteomic profiles of the vastus lateralis muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6). Additionally, MA muscle was analyzed following eight weeks of resistance training (RT, 2d/week). Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteomes were evident between age cohorts, and most differentially expressed non-MyoF proteins (447/543) were more enriched in MA versus Y. Biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. RT in MA participants only altered ~0.3% of MyoF and ~1.0% of non-MyoF proteomes. In summary, aging and RT predominantly affect non-contractile proteins in skeletal muscle. Additionally, marginal proteome adaptations with RT suggest more rigorous training may stimulate more robust effects or that RT, regardless of age, subtly alters basal state skeletal muscle protein abundances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Max Michel
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | | | - Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Andrew D. Fruge
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
5
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Max Michel J, Plotkin DL, Mattingly ML, Brooks Mobley C, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543459. [PMID: 37333259 PMCID: PMC10274632 DOI: 10.1101/2023.06.02.543459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We examined the myofibrillar (MyoF) and non-myofibrillar (non-MyoF) proteomic profiles of the vastus lateralis (VL) muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6), and MA following eight weeks of knee extensor resistance training (RT, 2d/week). Shotgun/bottom-up proteomics in skeletal muscle typically yields wide protein abundance ranges that mask lowly expressed proteins. Thus, we adopted a novel approach whereby the MyoF and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. A total of 10,866 proteins (4,421 MyoF and 6,445 non-MyoF) were identified. Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteome were evident between age cohorts. Further, most of these age-related non-MyoF proteins (447/543) were more enriched in MA versus Y. Several biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including (but not limited to) increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. Non-MyoF proteins associated with splicing and proteostasis were further interrogated, and in agreement with bioinformatics, alternative protein variants, spliceosome-associated proteins (snRNPs), and proteolysis-related targets were more abundant in MA versus Y. RT in MA non-significantly increased VL muscle cross-sectional area (+6.5%, p=0.066) and significantly increased knee extensor strength (+8.7%, p=0.048). However, RT modestly altered the MyoF (~0.3%, 11 upregulated and two downregulated proteins) and non-MyoF proteomes (~1.0%, 56 upregulated and eight downregulated proteins, p<0.01). Further, RT did not affect predicted biological processes in either fraction. Although participant numbers were limited, these preliminary results using a novel deep proteomic approach in skeletal muscle suggest that aging and RT predominantly affects protein abundances in the non-contractile protein pool. However, the marginal proteome adaptations occurring with RT suggest either: a) this may be an aging-associated phenomenon, b) more rigorous RT may stimulate more robust effects, or c) RT, regardless of age, subtly affects skeletal muscle protein abundances in the basal state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, AL USA
| | | | | | | | | | | | | |
Collapse
|