1
|
Ehrengut C, Schindler A, Seehofer D, Ebel S, Steinhoff K, Sabri O, Berg T, Denecke T, Bömmel FVAN, Meyer HJ. The Apparent Diffusion Coefficient of the Paraspinal and Psoas Muscles Are of Prognostic Relevance in Patients With Hepatocellular Carcinoma Undergoing Transarterial Radioembolization. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:281-287. [PMID: 38707727 PMCID: PMC11062171 DOI: 10.21873/cdp.10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 05/07/2024]
Abstract
Background/Aim Transarterial radioembolization (TARE) is a treatment option for early or intermediate stage hepatocellular carcinoma (HCC). Sarcopenia is defined as loss of muscle strength and quality which can be estimated by imaging modalities and has been associated with prognosis and treatment response in HCC patients. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted imaging (DWI) can reflect the tissue composition and might be better to determine muscle changes of sarcopenia than the standard method of computed tomography (CT). The present study sought to elucidate ADC values of the abdominal wall muscles as a prognostic factor in patients undergoing TARE. Patients and Methods A retrospective analysis was performed between 2016 and 2020. Overall, 52 patients, 9 women (17.3%) and 43 men (82.7%), with a mean age of 69±8.5 years were included into the analysis. In every case, the first pre-interventional magnetic resonance imaging (MRI) including DWI was used to measure the ADC values of paraspinal and psoas muscle. The 12-month survival after TARE was used as the primary study outcome. Results Overall, 40 patients (76.9%) of the patient cohort died within the 12-month observation period. Mean overall survival was 10.9 months after TARE for all patients. Mean ADC values for all muscles were 1.31±0.13×10-3mm2/s. The ADC values of the paraspinal muscles were statistically significantly higher compared to the ADC values of the psoas muscles (p=0.0031). A positive correlation was identified between mean ADC and the thrombocyte count (r=0.37, p=0.005) and serum bilirubin (r=-0.30, p=0.03). In the multivariate Cox regression analysis, the mean ADC values of all muscles were associated with the survival after 12 months (HR=0.98, 95% CI=0.97-0.99, p=0.04). Conclusion ADC values of the abdominal wall muscles could be used as a prognostic biomarker in patients with HCC undergoing TARE. These preliminary results should be confirmed by further studies using external validation cohorts and other treatment modalities.
Collapse
Affiliation(s)
- Constantin Ehrengut
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Aaron Schindler
- Department of Hepatology, University of Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Sebastian Ebel
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine University of Leipzig, Leipzig, Germany
| | - Thomas Berg
- Department of Hepatology, University of Leipzig, Leipzig, Germany
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | | | - Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
3
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Li X, Kong X, Li R. Correlation between lipoprotein(a), albuminuria, myostatin and sarcopenia in elderly patients with type 2 diabetes. J Diabetes Complications 2023; 37:108382. [PMID: 36535110 DOI: 10.1016/j.jdiacomp.2022.108382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
AIM To investigate the relationship of the lipoprotein(a), albuminuria, myostatin with sarcopenia in elderly patients with type 2 diabetes (T2D). METHODS A total of 461 elderly patients with T2D who were admitted to our hospital were selected as the research subjects. There were 34 cases in line with Asian sarcopenia diagnosis (group A), and 427 patients had no such symptoms as the control group (group C). The levels of lipoprotein(a), albuminuria, myostatin in each group were compared, and the effect factors of muscle loss in elderly patients with T2D were analyzed by univariate/multivariate logistic regression. RESULTS The incidence of sarcopenia in 461 elderly patients with T2D in this study was 7.37 % (34/461). However, the levels of appendicular skeletal muscle mass index (ASMI, kg/m2), albumin and epidermal growth factor receptor (eGFR) in group A were lower than those in group C (P < 0.05). The levels of lipoprotein(a), albuminuria, myostatin in group A were higher those in group C (P < 0.05). Additionally, group A had a higher morbidity in diabetic retinopathy and neuropathy. Univariate logistic regression analysis revealed that the risk factors of muscle loss are ASMI, lipoprotein(a), albuminuria, myostatin, diabetic retinopathy and neuropathy. Multivariate Logistic regression analysis showed that the risk factors of muscle loss in elderly patients with T2D were lipoprotein(a), albuminuria, myostatin and diabetic neuropathy. CONCLUSION The lipoprotein(a), albuminuria, myostatin and diabetic neuropathy are closely related to the occurrence and development of muscle loss in elderly patients with T2D.
Collapse
Affiliation(s)
- Xiaoqian Li
- School of Nursing, Weinan Vocational and Technical College, Weinan, Shaanxi, China
| | - Xinxing Kong
- Third Department of Surgery, The First Hospital of Weinan City, Weinan, Shaanxi, China
| | - Ran Li
- Department of Endocrinology, The First People's Hospital of Tai'an City, Tai'an, Shandong, China.
| |
Collapse
|
5
|
Effect of Lymphaticovenous Anastomosis on Muscle Edema, Limb, and Subfascial Volume in Lower Limb Lymphedema: MRI Studies. J Am Coll Surg 2022; 235:227-239. [PMID: 35839398 PMCID: PMC9278703 DOI: 10.1097/xcs.0000000000000236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although satisfactory volume reduction in secondary unilateral lower limb lymphedema after lymphaticovenous anastomosis (LVA) in the affected limb has been well reported, alleviation of muscle edema and the impact of LVA on the contralateral limb have not been investigated. STUDY DESIGN This retrospective cohort study enrolled patients who underwent supermicrosurgical LVA between November 2015 and January 2017. Pre- and post-LVA muscle edema were assessed using fractional anisotropy (FA) and apparent diffusion coefficient (ADC). The primary endpoint was changes in limb/subfascial volume assessed with magnetic resonance volumetry at least 6 months after LVA. RESULTS Twenty-one patients were enrolled in this study. Significant percentage reductions in post-LVA muscle edema were found in the affected thigh (83.6% [interquartile range = range of Q1 to Q3; 29.8-137.1] [FA], 53.3% [27.0-78.4] [ADC]) as well as limb (21.7% [4.4-26.5]) and subfascial (18.7% [10.7-39.1]) volumes. Similar findings were noted in the affected lower leg: 71.8% [44.0-100.1] (FA), 59.1% [45.8-91.2] (ADC), 21.2% [6.8-38.2], and 28.2% [8.5-44.8], respectively (all p < 0.001). Significant alleviation of muscle edema was also evident in the contralateral limbs (thigh: 25.1% [20.4-57.5] [FA]; 10.7% [6.6-17.7] [ADC]; lower leg: 47.1% [35.0-62.8] [FA]; 14.6% [6.5-22.1] [ADC]; both p < 0.001), despite no statistically significant difference in limb and subfascial volumes. CONCLUSIONS Our study found significant reductions in muscle edema and limb/subfascial volumes in the affected limb after LVA. Our findings regarding edema in the contralateral limb were consistent with possible lymphedema-associated systemic influence on the unaffected limb, which could be surgically relieved.
Collapse
|