1
|
Wang J, Lin S, Liu A. Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review. Biomimetics (Basel) 2023; 8:350. [PMID: 37622955 PMCID: PMC10452487 DOI: 10.3390/biomimetics8040350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Biological principles draw attention to service robotics because of similar concepts when robots operate various tasks. Bioinspired perception is significant for robotic perception, which is inspired by animals' awareness of the environment. This paper reviews the bioinspired perception and navigation of service robots in indoor environments, which are popular applications of civilian robotics. The navigation approaches are classified by perception type, including vision-based, remote sensing, tactile sensor, olfactory, sound-based, inertial, and multimodal navigation. The trend of state-of-art techniques is moving towards multimodal navigation to combine several approaches. The challenges in indoor navigation focus on precise localization and dynamic and complex environments with moving objects and people.
Collapse
Affiliation(s)
- Jianguo Wang
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shiwei Lin
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ang Liu
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Accommodating unobservability to control flight attitude with optic flow. Nature 2022; 610:485-490. [PMID: 36261554 PMCID: PMC9581779 DOI: 10.1038/s41586-022-05182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Attitude control is an essential flight capability. Whereas flying robots commonly rely on accelerometers1 for estimating attitude, flying insects lack an unambiguous sense of gravity2,3. Despite the established role of several sense organs in attitude stabilization3-5, the dependence of flying insects on an internal gravity direction estimate remains unclear. Here we show how attitude can be extracted from optic flow when combined with a motion model that relates attitude to acceleration direction. Although there are conditions such as hover in which the attitude is unobservable, we prove that the ensuing control system is still stable, continuously moving into and out of these conditions. Flying robot experiments confirm that accommodating unobservability in this manner leads to stable, but slightly oscillatory, attitude control. Moreover, experiments with a bio-inspired flapping-wing robot show that residual, high-frequency attitude oscillations from flapping motion improve observability. The presented approach holds a promise for robotics, with accelerometer-less autopilots paving the road for insect-scale autonomous flying robots6. Finally, it forms a hypothesis on insect attitude estimation and control, with the potential to provide further insight into known biological phenomena5,7,8 and to generate new predictions such as reduced head and body attitude variance at higher flight speeds9.
Collapse
|
3
|
Billah MA, Faruque IA. Bioinspired Visuomotor Feedback in a Multiagent Group/Swarm Context. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2020.3033703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Serres JR, Viollet S. Insect-inspired vision for autonomous vehicles. CURRENT OPINION IN INSECT SCIENCE 2018; 30:46-51. [PMID: 30553484 DOI: 10.1016/j.cois.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Flying insects are being studied these days as if they were agile micro air vehicles fitted with smart sensors, requiring very few brain resources. The findings obtained on these natural fliers have proved to be extremely valuable when it comes to designing compact low-weight artificial optical sensors capable of performing visual processing tasks robustly under various environmental conditions (light, clouds, contrast). Here, we review some outstanding bio-inspired visual sensors, which can be used for either detecting motion in the visible spectrum or controlling celestial navigation in the ultraviolet spectrum and for attitude stabilisation purposes. Biologically inspired visual sensors do not have to comprise a very large number of pixels: they are able to perform both short and long range navigation tasks surprisingly well with just a few pixels and a weak resolution.
Collapse
|
5
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
6
|
Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:505-517. [PMID: 29582137 DOI: 10.1007/s00359-018-1258-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
We show in a comparative analysis that distinct retinal specializations in insect ocelli are much more common than previously realized and that the rhabdom organization of ocellar photoreceptors is extremely diverse. Hymenoptera, Odonata and Diptera show prominent equatorial fovea-like indentations of the ocellar retinae, where distal receptor endings are furthest removed from the lens surface and receptor densities are highest. In contrast, rhabdomere arrangements are very diverse across insect groups: in Hymenoptera, with some exceptions, pairs of ocellar retinular cells form sheet-like rhabdoms that form elongated rectangular shapes in cross-section, with highly aligned microvilli directions perpendicular to the long axis of cross-sections. This arrangement makes most ocellar retinular cells in Hymenoptera sensitive to the direction of polarized light. In dragonflies, triplets of retinular cells form a y-shaped fused rhabdom with microvilli directions oriented at 60° to each other. In Dipteran ocellar retinular cells microvilli directions are randomised, which destroys polarization sensitivity. We suggest that the differences in ocellar organization between insect groups may reflect the different head attitude control systems that have evolved in these insect groups, but possibly also differences in the mode of locomotion and in the need for celestial compass information.
Collapse
|
7
|
Pericet-Camara R, Dobrzynski MK, Juston R, Viollet S, Leitel R, Mallot HA, Floreano D. An artificial elementary eye with optic flow detection and compositional properties. J R Soc Interface 2016. [PMID: 26202684 DOI: 10.1098/rsif.2015.0414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a 2 mg artificial elementary eye whose structure and functionality is inspired by compound eye ommatidia. Its optical sensitivity and electronic architecture are sufficient to generate the required signals for the measurement of local optic flow vectors in multiple directions. Multiple elementary eyes can be assembled to create a compound vision system of desired shape and curvature spanning large fields of view. The system configurability is validated with the fabrication of a flexible linear array of artificial elementary eyes capable of extracting optic flow over multiple visual directions.
Collapse
Affiliation(s)
- Ramon Pericet-Camara
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michal K Dobrzynski
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Raphaël Juston
- Aix-Marseille Université, CNRS, ISM UMR7287, 13288, Marseille CEDEX 09, France
| | - Stéphane Viollet
- Aix-Marseille Université, CNRS, ISM UMR7287, 13288, Marseille CEDEX 09, France
| | - Robert Leitel
- Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, Germany
| | - Hanspeter A Mallot
- Laboratory of Cognitive Systems, Department of Biology, University of Tübingen, Tübingen, Germany
| | - Dario Floreano
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Shyy W, Kang CK, Chirarattananon P, Ravi S, Liu H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc Math Phys Eng Sci 2016; 472:20150712. [PMID: 27118897 PMCID: PMC4841661 DOI: 10.1098/rspa.2015.0712] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.
Collapse
Affiliation(s)
- Wei Shyy
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Chang-kwon Kang
- Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Pakpong Chirarattananon
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Sridhar Ravi
- Graduate School of Engineering, Chiba University, Chiba, Japan
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Hao Liu
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
- Shanghai-Jiao Tong University and Chiba, University International Cooperative Research Centre (SJTU-CU ICRC), Minhang, Shanghai, China
| |
Collapse
|
9
|
Böhm A, Pass G. The ocelli of Archaeognatha (Hexapoda): Functional morphology, pigment migration and chemical nature of the reflective tapetum. J Exp Biol 2016; 219:3039-3048. [DOI: 10.1242/jeb.141275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/18/2016] [Indexed: 01/03/2023]
Abstract
The ocelli of Archaeognatha, or jumping bristletails, differ from typical insect ocelli in shape and field of view. While the shape of the lateral ocelli is highly variable among species, most Machiloidea have sole shaped lateral ocelli beneath the compound eyes and a median ocellus that is oriented downward. This study investigated morphological and physiological aspects of the ocelli of Machilis hrabei and Lepismachilis spp.
The light reflecting ocellar tapetum in Machilis hrabei is made up by xanthine nanocrystals, as demonstrated by confocal Raman spectroscopy. Pigment granules in the photoreceptor cells move behind the tapetum in the dark adapted state. Such a vertical pigment migration in combination with a tapetum has not been described for any insect ocellus so far. The pigment migration has a dynamic range of around 4 log units and is maximally sensitive to green light. Adaptation from darkness to bright light lasts over an hour, which is slow compared to the radial pupil mechanism in some dragonflies and locusts.
Collapse
|
10
|
Science, technology and the future of small autonomous drones. Nature 2015; 521:460-6. [DOI: 10.1038/nature14542] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/18/2015] [Indexed: 11/08/2022]
|