1
|
Han MJ, Kim SH, Shin JH, Hwang JH. Caffeine-induced hypokalemia: a case report. BMC Nephrol 2021; 22:260. [PMID: 34243702 PMCID: PMC8272359 DOI: 10.1186/s12882-021-02465-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND With an increase in the global popularity of coffee, caffeine is one of the most consumed ingredients of modern times. However, the consumption of massive amounts of caffeine can lead to severe hypokalemia. CASE PRESENTATION A 29-year-old man without a specific past medical history was admitted to our hospital with recurrent episodes of sudden and severe lower-extremity weakness. Laboratory tests revealed low serum potassium concentration (2.6-2.9 mmol/L) and low urine osmolality (100-130 mOsm/kgH2O) in three such prior episodes. Urinary potassium/urinary creatinine ratio was 12 and 16 mmol/gCr, respectively. The patient was not under medication with laxatives, diuretics, or herbal remedies. Through an in-depth interview, we found that the patient consumed large amounts of caffeine-containing beverages daily, which included > 15 cups of coffee, soda, and various kinds of tea. After the cessation of coffee intake and concomitant intravenous potassium replacement, the symptoms rapidly resolved, and the serum potassium level normalized. CONCLUSIONS An increased intracellular shift of potassium and increased loss of potassium in urine due to the diuretic action have been suggested to be the causes of caffeine-induced hypokalemia. In cases of recurring hypokalemia of unknown cause, high caffeine intake should be considered.
Collapse
Affiliation(s)
- Min Jee Han
- Division of Nephrology, Department of Internal Medicine, Guro Sungsim Hospital, Seoul, Korea
| | - Su-Hyun Kim
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, 06973 Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung-ho Shin
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, 06973 Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jin Ho Hwang
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, 06973 Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Marcek Chorvatova A, Kirchnerova J, Cagalinec M, Mateasik A, Chorvat D. Spectrally and spatially resolved laser-induced photobleaching of endogenous flavin fluorescence in cardiac myocytes. Cytometry A 2018; 95:13-23. [PMID: 30240113 PMCID: PMC6590054 DOI: 10.1002/cyto.a.23591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Naturally occurring endogenous fluorescence of flavins, arising in response to excitation by visible light, offers broad opportunity to investigate mitochondrial metabolic state directly in living cells and tissues, including in clinical settings. However, photobleaching, the loss of the autofluorescence intensity following prolonged exposure to light is an inherent phenomenon occurring during the fluorescence acquisition, which can have a negative impact on the recorded data, particularly in the context of measurement of metabolic modulations in pathophysiological conditions. In the presented study, we present a detailed analysis of endogenous flavins fluorescence photobleaching arising in living cardiac cells during spectrally‐resolved confocal imaging. We demonstrate significant nonuniform photobleaching related to different bleaching rates of individual flavin components, resolved by linear spectral unmixing of the recorded signals. Induced photodamage was without effect on the cell morphology, but lead to significant modifications of the cell responsiveness to metabolic modulators and its contractility, suggesting functional metabolic alterations in the recorded cells. These findings point to the necessity of inducing limited photobleaching during metabolic screening in all studies involving visible light excitation and fluorescence acquisition in living cells. © 2018 The Authors Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry
Collapse
Affiliation(s)
- Alzbeta Marcek Chorvatova
- Department of Biophotonics, International Laser Centre, Ilkovicova 3, 84104, Bratislava, Slovakia.,Department of Biophysics, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J Herdu 1, 91702, Trnava, Slovakia
| | - Jana Kirchnerova
- Department of Biophotonics, International Laser Centre, Ilkovicova 3, 84104, Bratislava, Slovakia
| | - Michal Cagalinec
- Department of Biophotonics, International Laser Centre, Ilkovicova 3, 84104, Bratislava, Slovakia.,Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Anton Mateasik
- Department of Biophotonics, International Laser Centre, Ilkovicova 3, 84104, Bratislava, Slovakia
| | - Dusan Chorvat
- Department of Biophotonics, International Laser Centre, Ilkovicova 3, 84104, Bratislava, Slovakia
| |
Collapse
|
3
|
Bébarová M, Horáková Z, Kula R. Addictive drugs, arrhythmias, and cardiac inward rectifiers. Europace 2017; 19:346-355. [PMID: 27302393 DOI: 10.1093/europace/euw071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/20/2016] [Indexed: 12/30/2022] Open
Abstract
In many addictive drugs including alcohol and nicotine, proarrhythmic effects were reported. This review provides an overview of the current knowledge in this field (with a focus on the inward rectifier potassium currents) to promote the lacking data and appeal for their completion, thus, to improve understanding of the proarrhythmic potential of addictive drugs.
Collapse
|
4
|
Kucuk M, Celen MC, Yamasan BE, Olgar Y, Ozdemir S. Effects of Ticagrelor on Ionic Currents and Contractility in Rat Ventricular Myocytes. Cardiovasc Drugs Ther 2015; 29:419-424. [PMID: 26410045 DOI: 10.1007/s10557-015-6617-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Antiplatelet therapy has been widely used for management of patients with ischaemic heart diseases or thrombotic events. Experimental studies have shown that ticlopidine and clopidogrel decreased L-type Ca(2+) currents (ICaL), altered action potential (AP) duration and thence exerted negative inotropic effects. In this study we tested if ticagrelor, a non-thienopyridine agent, has any influence on contractile and electrical properties of isolated ventricular myocytes. METHODS Cardiomyocytes were isolated from male rat hearts with an enzymatic dissociation procedure and left ventricular myocytes were used for experiments. The effects of ticagrelor (1 μM) on sarcomere shortening, ionic currents and action potentials were measured at 36 ± 1 °C. RESULTS Ticagrelor significantly reduced ICaL density (~18%, p < 0.01) of ventricular myocytes and this effect was reversible. In consistence, it also decreased sarcomere shortening of electrically stimulated cardiomyocytes (13%, p < 0.05), while it did not change relaxation rates. Repolarizing K(+) currents and AP duration were unaffected by 1 μM ticagrelor application. CONCLUSIONS Ticagrelor exerts a significant influence on contractile properties and membrane currents of ventricular myocytes similarly to thienopyridine agents. The impact of ticagrelor on cardiac excitation-contraction coupling elements is important, since it is widely used for the treatment of patients with heart diseases.
Collapse
Affiliation(s)
- Murathan Kucuk
- Faculty of Medicine Department of Cardiology, Akdeniz University, Antalya, Turkey
| | - Murat C Celen
- Faculty of Medicine Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Bilge E Yamasan
- Faculty of Medicine Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Yusuf Olgar
- Faculty of Medicine Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Semir Ozdemir
- Faculty of Medicine Department of Biophysics, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
5
|
Li L, Niederer SA, Idigo W, Zhang YH, Swietach P, Casadei B, Smith NP. A mathematical model of the murine ventricular myocyte: a data-driven biophysically based approach applied to mice overexpressing the canine NCX isoform. Am J Physiol Heart Circ Physiol 2010; 299:H1045-63. [PMID: 20656884 DOI: 10.1152/ajpheart.00219.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mathematical modeling of Ca(2+) dynamics in the heart has the potential to provide an integrated understanding of Ca(2+)-handling mechanisms. However, many previous published models used heterogeneous experimental data sources from a variety of animals and temperatures to characterize model parameters and motivate model equations. This methodology limits the direct comparison of these models with any particular experimental data set. To directly address this issue, in this study, we present a biophysically based model of Ca(2+) dynamics directly fitted to experimental data collected in left ventricular myocytes isolated from the C57BL/6 mouse, the most commonly used genetic background for genetically modified mice in studies of heart diseases. This Ca(2+) dynamics model was then integrated into an existing mouse cardiac electrophysiology model, which was reparameterized using experimental data recorded at consistent and physiological temperatures. The model was validated against the experimentally observed frequency response of Ca(2+) dynamics, action potential shape, dependence of action potential duration on cycle length, and electrical restitution. Using this framework, the implications of cardiac Na(+)/Ca(2+) exchanger (NCX) overexpression in transgenic mice were investigated. These simulations showed that heterozygous overexpression of the canine cardiac NCX increases intracellular Ca(2+) concentration transient magnitude and sarcoplasmic reticulum Ca(2+) loading, in agreement with experimental observations, whereas acute overexpression of the murine cardiac NCX results in a significant loss of Ca(2+) from the cell and, hence, depressed sarcoplasmic reticulum Ca(2+) load and intracellular Ca(2+) concentration transient magnitude. From this analysis, we conclude that these differences are primarily due to the presence of allosteric regulation in the canine cardiac NCX, which has not been observed experimentally in the wild-type mouse heart.
Collapse
Affiliation(s)
- L Li
- Computing Laboratory, University of Oxford and John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Mao X, Chai Y, Lin YF. Dual regulation of the ATP-sensitive potassium channel by caffeine. Am J Physiol Cell Physiol 2007; 292:C2239-58. [PMID: 17303650 DOI: 10.1152/ajpcell.00326.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cellular metabolic status to changes in membrane electrical properties. Caffeine (1,2,7-trimethylxanthine) has been shown to inhibit several ion channels; however, how caffeine regulates K(ATP) channels was not well understood. By performing single-channel recordings in the cell-attached configuration, we found that bath application of caffeine significantly enhanced the currents of Kir6.2/SUR1 channels, a neuronal/pancreatic K(ATP) channel isoform, expressed in transfected human embryonic kidney (HEK)293 cells in a concentration-dependent manner. Application of nonselective and selective phosphodiesterase (PDE) inhibitors led to significant enhancement of Kir6.2/SUR1 channel currents. Moreover, the stimulatory action of caffeine was significantly attenuated by KT5823, a specific PKG inhibitor, and, to a weaker extent, by BAPTA/AM, a membrane-permeable Ca(2+) chelator, but not by H-89, a selective PKA inhibitor. Furthermore, the stimulatory effect was completely abrogated when KT5823 and BAPTA/AM were co-applied with caffeine. In contrast, the activity of Kir6.2/SUR1 channels was decreased rather than increased by caffeine in cell-free inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels were suppressed regardless of patch configurations. Caffeine also enhanced the single-channel currents of recombinant Kir6.2/SUR2B channels, a nonvascular smooth muscle K(ATP) channel isoform, although the increase was smaller. Moreover, bidirectional effects of caffeine were reproduced on the K(ATP) channel present in the Cambridge rat insulinoma G1 (CRI-G1) cell line. Taken together, our data suggest that caffeine exerts dual regulation on the function of K(ATP) channels: an inhibitory regulation that acts directly on Kir6.2 or some closely associated regulatory protein(s), and a sulfonylurea receptor (SUR)-dependent stimulatory regulation that requires cGMP-PKG and intracellular Ca(2+)-dependent signaling.
Collapse
Affiliation(s)
- Xia Mao
- Dept. of Physiology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
7
|
Pearman C, Kent W, Bracken N, Hussain M. H-89 inhibits transient outward and inward rectifier potassium currents in isolated rat ventricular myocytes. Br J Pharmacol 2006; 148:1091-8. [PMID: 16799649 PMCID: PMC1752020 DOI: 10.1038/sj.bjp.0706810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. Voltage clamp was used to investigate the effects of N-[2-p-bromo-cinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), a potent inhibitor of PKA, on transient outward K(+) current (I(to)) and inward rectifying K(+) current (I(K1)) in rat cardiac muscle. 2. Initial experiments, performed using descending voltage ramps, showed that H-89 inhibited both the outward and inward ramp currents in a concentration-dependent manner at concentrations between 5 and 60 micromol l(-1). A similar degree of inhibition was observed when I(to) and I(K1) were recorded using square wave depolarising and hyperpolarising voltage steps, respectively. 3. The IC(50) was 35.8 micromol l(-1) for I(to) and 27.8 micromol l(-1) for I(K1) compared to 5.4 micromol l(-1) for L-type Ca(2+) current (I(Ca)). The Hill coefficients for I(to), I(K1) and I(Ca) were -1.97, -1.60 and -1.21, respectively. In addition to inhibiting I(to) amplitude, H-89 also accelerated the time to peak and the rate of voltage-dependent inactivation so that the time course of I(to) was abbreviated. 4. Paired-pulse protocols were performed to study the effects of H-89 on steady-state activation and inactivation as well as recovery from voltage-dependent inactivation. H-89 produced a concentration-dependent rightward shift in voltage-dependent activation but had no significant effect on steady-state inactivation. Recovery from voltage-dependent inactivation was delayed, although this was only visible at the highest concentration (60 micromol l(-1)) used. In experiments investigating the effects of elevated cyclic AMP, the beta-adrenergic agonist isoprenaline and the phosphatase inhibitor calyculin A had no major effects on I(to) or I(K1). 6. Data suggest that the effects of H-89 on K(+) currents are more complex than simple inhibition of PKA-mediated phosphorylation.
Collapse
Affiliation(s)
- Charles Pearman
- School of Clinical Sciences, University of Liverpool, Daulby Street, Liverpool L69 3GA
| | - William Kent
- School of Clinical Sciences, University of Liverpool, Daulby Street, Liverpool L69 3GA
| | - Nicolas Bracken
- School of Clinical Sciences, University of Liverpool, Daulby Street, Liverpool L69 3GA
| | - Munir Hussain
- School of Clinical Sciences, University of Liverpool, Daulby Street, Liverpool L69 3GA
- Author for correspondence:
| |
Collapse
|
8
|
Cockerill SL, Mitcheson JS. Direct block of human ether-a-go-go-related gene potassium channels by caffeine. J Pharmacol Exp Ther 2006; 316:860-8. [PMID: 16227470 DOI: 10.1124/jpet.105.094755] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human ether-a-go-go-related gene (hERG) potassium channel is expressed in a variety of cell types, including neurons, tumor cells, and cardiac myocytes. In the heart, it is important for repolarization of the cardiac action potential. Attenuation of hERG current can cause long QT syndrome and cardiac arrhythmias such as torsades de pointes. Caffeine is frequently used as a pharmacological tool to study calcium-dependent transduction pathways in cellular preparations. It raises cytosolic calcium by opening ryanodine receptors and may also inhibit phosphodiesterases to increase cytosolic cAMP. In this study, we show 5 mM caffeine rapidly and reversibly attenuates hERG currents expressed in human embryonic kidney 293 cells to 61.1 +/- 2.2% of control. Caffeine-dependent inhibition of hERG current is not altered by raising cAMP with forskolin, buffering cytosolic calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or inhibition of protein kinase C. Thus, the effects of caffeine are unlikely to be mediated by cAMP or intracellular calcium-dependent mechanisms. Further experiments showed caffeine directly blocks hERG in an open state-dependent manner. Furthermore, caffeine inhibition is greatly reduced by the pore mutants Y562A and F656A hERG, which disrupt block of most previously tested hERG antagonists. Thus, caffeine attenuates hERG currents by binding to a drug receptor located within the inner cavity of the channel. Dietary intake of caffeine is unlikely to cause long QT syndrome because plasma concentrations do not reach sufficiently high levels to significantly inhibit hERG currents. However, the effects of caffeine have implications for its use in examining calcium-dependent pathways in cellular preparations expressing hERG.
Collapse
Affiliation(s)
- S L Cockerill
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | |
Collapse
|
9
|
Harinath S, Sikdar SK. Inhibition of human TREK-1 channels by caffeine and theophylline. Epilepsy Res 2005; 64:127-35. [PMID: 15927451 DOI: 10.1016/j.eplepsyres.2005.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/08/2005] [Accepted: 03/12/2005] [Indexed: 11/18/2022]
Abstract
Caffeine (1,3,7-trimethylxanthine) and theophylline (1,3-dimethylxanthine) are used for therapeutic purposes and can cause life-threatening convulsive seizures due to systemic toxicity. The mechanisms for the epileptogenicity of caffeine and theophylline are not clear. TWIK-related K(+) channels (TREK-1) are highly expressed in the human central nervous system and have a major role in the control of neuronal excitability by regulating the resting membrane potential. In view of their physiological significance, inhibition of TREK-1 channels may be implicated in caffeine- and theophylline-induced seizures. We thus investigated, using whole-cell patch-clamp technique, modulation of hTREK-1 channels expressed in Chinese hamster ovary (CHO) cells by caffeine and theophylline. Caffeine and theophylline produced reversible inhibition of TREK-1 channels in a concentration-dependent manner. The half-maximal inhibitory concentrations (IC(50)) for caffeine and theophylline were 377+/-54microM and 486+/-76microM, respectively. Caffeine and theophylline depolarized the membrane potential of CHO(TREK-1) cells in a reversible and concentration-dependent manner. Inhibition by caffeine (5mM) and theophylline (2mM) was attenuated in TREK-1 channels with mutation of the PKA consensus sequence at serine 348, suggesting the involvement of cAMP/PKA pathway in the inhibitory process. Inhibition of TREK-1 channels and consequent membrane depolarization may contribute to the convulsive seizures induced by toxic levels of caffeine and theophylline.
Collapse
Affiliation(s)
- S Harinath
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
10
|
Battista MC, Calvo E, Chorvatova A, Comte B, Corbeil J, Brochu M. Intra-uterine growth restriction and the programming of left ventricular remodelling in female rats. J Physiol 2005; 565:197-205. [PMID: 15774537 PMCID: PMC1464484 DOI: 10.1113/jphysiol.2004.078139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epidemiological studies link intra-uterine growth restriction (IUGR) with increased incidence of hypertension and cardiac disease in adulthood. Our rat model of IUGR supports this contention and provides evidence for the programming of susceptibility for hypertension in all offspring. Moreover, in the female offspring only, gross anatomical changes (cardiac ventricle to body ratios) and increased left cardiac ventricular atrial natriuretic peptide (ANP) mRNA levels provide evidence for programming of cardiac disease in this gender. The aim of the current study was to measure changes in cardiac tissue that support remodelling that could be implicated in the initiation of hypertrophy. Adult female rats from our IUGR model and age- and sex-matched controls were killed at 12 weeks of age. Left cardiac ventricles were removed and used for monitoring changes in several key genes, Na+,K+-ATPase beta1 protein expression, cardiomyocyte morphology and contractility as well as citrate synthase and aconitase activities. When compared to controls, female offspring of our IUGR rat model exhibit higher expression (mRNA) of ANP and the atrial isoform of the myosin light chain, lower levels of Na+,K+-ATPase beta1 protein, increased cardiomyocyte depth and volume, increased sarcomere length, diminished cardiomyocyte contractility and lower aconitase activity. Female offspring of our IUGR rat model exhibit changes as adults that are consistent with the onset of cardiac remodelling. The decrease in aconitase activity suggests that oxidative stress may be implicated in this response.
Collapse
|