1
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
2
|
Prabutzki P, Schiller J, Engel KM. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024; 398:118569. [PMID: 39227208 DOI: 10.1016/j.atherosclerosis.2024.118569] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany.
| |
Collapse
|
3
|
Wilson RL, Sylvester CB, Wiltz DC, Kumar A, Malik TH, Morrisett JD, Grande-Allen KJ. The Ryanodine Receptor Contributes to the Lysophosphatidylcholine-Induced Mineralization in Valvular Interstitial Cells. Cardiovasc Eng Technol 2020; 11:316-327. [PMID: 32356274 PMCID: PMC10558202 DOI: 10.1007/s13239-020-00463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Fibrocalcific aortic valve disease (CAVD) is caused by the deposition of calcific nodules in the aortic valve leaflets, resulting in progressive loss of function that ultimately requires surgical intervention. This process is actively mediated by the resident valvular interstitial cells (VICs), which, in response to oxidized lipids, transition from a quiescent to an osteoblast-like state. The purpose of this study was to examine if the ryanodine receptor, an intracellular calcium channel, could be therapeutically targeted to prevent this phenotypic conversion. METHODS The expression of the ryanodine receptor in porcine aortic VICs was characterized by qRT-PCR and immunofluorescence. Next, the VICs were exposed to lysophosphatidylcholine, an oxidized lipid commonly found in low-density lipoprotein, while the activity of the ryanodine receptor was modulated with ryanodine. The cultures were analyzed for markers of cellular mineralization, alkaline phosphatase activity, proliferation, and apoptosis. RESULTS Porcine aortic VICs predominantly express isoform 3 of the ryanodine receptors, and this protein mediates the cellular response to LPC. Exposure to LPC caused elevated intracellular calcium concentration in VICs, raised levels of alkaline phosphatase activity, and increased calcific nodule formation, but these changes were reversed when the activity of the ryanodine receptor was blocked. CONCLUSIONS Our findings suggest blocking the activity of the ryanodine receptor can attenuate the valvular mineralization caused by LPC. We conclude that oxidized lipids, such as LPC, play an important role in the development and progression of CAVD and that the ryanodine receptor is a promising target for pharmacological intervention.
Collapse
Affiliation(s)
- Reid L Wilson
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX, 77005, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Christopher B Sylvester
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX, 77005, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Dena C Wiltz
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX, 77005, USA
| | - Aditya Kumar
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX, 77005, USA
| | - Tahir H Malik
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX, 77005, USA
| | - Joel D Morrisett
- Departments of Medicine and Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX, 77005, USA.
| |
Collapse
|
4
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
5
|
Wiltz DC, Han RI, Wilson RL, Kumar A, Morrisett JD, Grande-Allen KJ. Differential Aortic and Mitral Valve Interstitial Cell Mineralization and the Induction of Mineralization by Lysophosphatidylcholine In Vitro.. Cardiovasc Eng Technol 2014; 5:371-383. [PMID: 25419248 PMCID: PMC4235965 DOI: 10.1007/s13239-014-0197-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Calcific aortic valve disease (CAVD) is a serious condition with vast uncertainty regarding the precise mechanism leading to valve calcification. This study was undertaken to examine the role of the lipid lysophosphatidylcholine (LPC) in a comparison of aortic and mitral valve cellular mineralization. METHODS The proportion of LPC in differentially calcified regions of diseased aortic valves was determined using thin layer chromatography (TLC). Next, porcine valvular interstitial cells (pVICs) from the aortic (paVICs) and mitral valve (pmVICs) were cultured with LPC (10-1 - 105 nM) and analyzed for cellular mineralization, alkaline phosphatase activity (ALPa), proliferation, and apoptosis. RESULTS TLC showed a higher percentage of LPC in calcified regions of tissue compared to non-calcified regions. In pVIC cultures, with the exception of 105 nM LPC, increasing concentrations of LPC led to an increase in phosphate mineralization. Increased levels of calcium content were exhibited at 104 nm LPC application compared to baseline controls. Compared to pmVIC cultures, paVIC cultures had greater total phosphate mineralization, ALPa, calcium content, and apoptosis, under both a baseline control and LPC-treated conditions. CONCLUSIONS This study showed that LPC has the capacity to promote pVIC calcification. Also, paVICs have a greater propensity for mineralization than pmVICs. LPC may be a key factor in the transition of the aortic valve from a healthy to diseased state. In addition, there are intrinsic differences that exist between VICs from different valves that may play a key role in heart valve pathology.
Collapse
Affiliation(s)
- Dena C. Wiltz
- Rice University, Department of Bioengineering, Houston, TX
| | - Richard I. Han
- Rice University, Department of Bioengineering, Houston, TX
- Baylor College of Medicine, Departments of Medicine and Biochemistry, Houston, TX
| | - Reid L. Wilson
- Rice University, Department of Bioengineering, Houston, TX
- Baylor College of Medicine, Departments of Medicine and Biochemistry, Houston, TX
| | - Aditya Kumar
- Rice University, Department of Bioengineering, Houston, TX
| | - Joel D. Morrisett
- Baylor College of Medicine, Departments of Medicine and Biochemistry, Houston, TX
| | | |
Collapse
|
6
|
Ding WG, Toyoda F, Ueyama H, Matsuura H. Lysophosphatidylcholine enhances IKs currents in cardiac myocytes through activation of G protein, PKC and Rho signaling pathways. J Mol Cell Cardiol 2011; 50:58-65. [DOI: 10.1016/j.yjmcc.2010.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/15/2022]
|
7
|
Liang GH, Park S, Kim MY, Kim JA, Choi S, Suh SH. Modulation of nonselective cation current by oxidized LDL and lysophosphatidylcholine and its inhibitory contribution to endothelial damage. Life Sci 2010; 86:733-9. [PMID: 20226792 DOI: 10.1016/j.lfs.2010.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
Abstract
AIMS This study examined the effects of oxidized low-density lipoprotein (LDL) and its major lipid constituent lysophosphatidylcholine (LPC) on nonselective cation (NSC) current and its inhibitory contribution to LPC-induced cytotoxicity in cultured human umbilical endothelial cells (HUVECs). MAIN METHODS Patch-clamp technique and the resazurin-based cell viability assay were used. KEY FINDINGS In voltage-clamped cells, oxidized LDL or LPC slowly activated NSC current. NSC current was also activated by loading cells with Ca(2+) solution buffered at various concentrations using a patch pipette or by applying the sarcoplasmic reticulum Ca(2+) pump blocker 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ), the metabolic inhibitor CN(-) or the hydroperoxide donor tert-butyl hydroperoxide (TBHP). On the contrary, when intracellular Ca(2+) was strongly buffered with 12mM BAPTA or cells were loaded with superoxide dismutase using a patch pipette, LPC or BHQ did not activate NSC current. Furthermore, NSC current activated by LPC, TBHP or CN(-) was inhibited by the antioxidant tempol or extracellular Ca(2+) depletion and NSC current activated by intracellular Ca(2+) was further augmented by oxidized LDL or LPC. LPC or oxidized LDL released Ca(2+) from intracellular stores and further enhanced store-operated Ca(2+) entry. LPC-induced cytotoxicity was augmented by inhibiting Ca(2+) influx and NO synthesis. SIGNIFICANCE Oxidized LDL or its main component LPC activated Ca(2+)-permeable NSC current via releasing Ca(2+) from intracellular stores and producing ROS and thereby increased Ca(2+) influx. Ca(2+) influx through NSC channel might protect endothelial cells by producing NO.
Collapse
Affiliation(s)
- Guo Hua Liang
- Department of Physiology and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Yamashita A, Tanaka K, Kamata R, Kumazawa T, Suzuki N, Koga H, Waku K, Sugiura T. Subcellular localization and lysophospholipase/transacylation activities of human group IVC phospholipase A2 (cPLA2gamma). Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1011-22. [PMID: 19501189 DOI: 10.1016/j.bbalip.2009.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 11/29/2022]
Abstract
cPLA2gamma was identified as an ortholog of cPLA2alpha, which is a key enzyme in eicosanoid production. cPLA2gamma was reported to be located in endoplasmic reticulum (ER) and mitochondria and to have lysophospholipase activity beside phospholipase A2 (PLA2) activity. However, subcellular localization, mechanism of membrane binding, regulation and physiological function have not been fully established. In the present study, we examined the subcellular localization and enzymatic properties of cPLA2gamma with C-terminal FLAG-tag. We found that cPLA2gamma was located not only in ER but also mitochondria even in the absence of the prenylation. Purified recombinant cPLA2gamma catalyzed an acyltransferase reaction from one molecule of lysophosphatidylcholine (LPC) to another, forming phosphatidylcholine (PC). LPC or lysophosphatidylethanolamine acted as acyl donor and acceptor, but lysophosphatidylserine, lysophosphatidylinositol and lysophosphatidic acid (LPA) did not. PC and phosphatidylethanolamine (PE) also acted as weak acyl donors. Reaction conditions changed the balance of lysophospholipase and transacylation activities, with addition of LPA/PA, pH>8, and elevated temperature markedly increasing transacylation activity; this suggests that lysophospholipase/transacylation activities of cPLA2gamma may be regulated by various factors. As lysophospholipids are known to accumulate in ischemia heart and to induce arryhthmia, the cPLA2gamma that is abundant in heart may have a protective role through clearance of lysophospholipids by its transacylation activity.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa 229-0195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 2009; 53:414-23. [PMID: 19333130 PMCID: PMC2802540 DOI: 10.1097/fjc.0b013e3181a15e77] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A dyshomeostasis of extra- and intracellular Ca(2+) and Zn(2+) occurs in rats receiving chronic aldosterone/salt treatment (ALDOST). Herein, we hypothesized that the dyshomeostasis of intracellular Ca(2+) and Zn(2+) is intrinsically coupled that alters the redox state of cardiac myocytes and mitochondria, with Ca(2+) serving as a pro-oxidant and Zn(2+) as an antioxidant. Toward this end, we harvested hearts from rats receiving 4 weeks of ALDOST alone or cotreatment with either spironolactone (Spiro), an aldosterone receptor antagonist, or amlodipine (Amlod), an L-type Ca(2+) channel blocker, and from age/sex-matched untreated controls. In each group, we monitored cardiomyocyte [Ca(2+)]i and [Zn(2+)]i and mitochondrial [Ca(2+)]m and [Zn(2+)]m; biomarkers of oxidative stress and antioxidant defenses; expression of Zn transporters, Zip1 and ZnT-1; metallothionein-1, a Zn(2+)-binding protein; and metal response element transcription factor-1, a [Zn(2+)]i sensor and regulator of antioxidant defenses. Compared with controls, at 4-week ALDOST, we found the following: (a) increased [Ca(2+)]i and [Zn(2+)]i, together with increased [Ca(2+)]m and [Zn(2+)]m, each of which could be prevented by Spiro and attenuated with Amlod; (b) increased levels of 3-nitrotyrosine and 4-hydroxy-2-nonenal in cardiomyocytes, together with increased H(2)O(2) production, malondialdehyde, and oxidized glutathione in mitochondria that were coincident with increased activities of Cu/Zn superoxide dismutase and glutathione peroxidase; and (c) increased expression of metallothionein-1, Zip1 and ZnT-1, and metal response element transcription factor-1, attenuated by Spiro. Thus, an intrinsically coupled dyshomeostasis of intracellular Ca(2+) and Zn(2+) occurs in cardiac myocytes and mitochondria in rats receiving ALDOST, where it serves to alter their redox state through a respective induction of oxidative stress and generation of antioxidant defenses. The importance of therapeutic strategies that can uncouple these two divalent cations and modulate their ratio in favor of sustained antioxidant defenses is therefore suggested.
Collapse
Affiliation(s)
- German Kamalov
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Prajwal A. Deshmukh
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Narina Y. Baburyan
- Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Malay S. Gandhi
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Patti L. Johnson
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Robert A. Ahokas
- Obstetrics & Gynecology University of Tennessee Health Science Center Memphis, TN USA
| | - Syamal K. Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
- Department of Surgery University of Tennessee Health Science Center Memphis, TN USA
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Ivan C. Gerling
- Division of Endocrinology, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| | - Karl T. Weber
- Division of Cardiovascular Diseases, Department of Medicine University of Tennessee Health Science Center Memphis, TN USA
| |
Collapse
|