1
|
NMDA receptors inhibit axonal outgrowth by inactivating Akt and activating GSK-3β via calcineurin in cultured immature hippocampal neurons. Exp Cell Res 2018; 371:389-398. [PMID: 30176218 DOI: 10.1016/j.yexcr.2018.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with an axon and dendritic arbors. It is still not well studied that how formation and elaboration of axon and dendrites is controlled by diffusible signaling factors such as glutamate via specific receptors. We found that N-methyl-D-aspartate (NMDA) receptors were enriched (stage 2-3) but decreased expression (stage 4-5) at tip of axon of cultured hippocampal neurons during distinct development stages. Inhibition of NMDA receptor activity by competitive antagonist DL-2-amino-5-phosphonovalerate (APV) or channel blocker MK801 promoted axonal outgrowth at the early stages, whereas inhibited dendritic development in later stages. Meanwhile, knockdown of NMDA receptors also promoted axonal outgrowth and branch in immature neurons. Furthermore, GluN2B but not GluN2A subunit inhibited axonal outgrowth in immature hippocampal neurons. Finally, we found that NMDA receptors inhibited axonal outgrowth by inactivating Akt and activating GSK-3β signaling in a calcineurin-dependent manner. Taken together, our results demonstrate that stabilization GSK-3β activation in the axon growth cone by Ca2+ influx through NMDA receptors may be involved in regulation of axon formation in immature neurons at early stages.
Collapse
|
2
|
Soo Hoo L, Banna CD, Radeke CM, Sharma N, Albertolle ME, Low SH, Weimbs T, Vandenberg CA. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS One 2016; 11:e0163671. [PMID: 27662481 PMCID: PMC5035089 DOI: 10.1371/journal.pone.0163671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons.
Collapse
Affiliation(s)
- Linda Soo Hoo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Chris D. Banna
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carolyn M. Radeke
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Mary E. Albertolle
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carol A. Vandenberg
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kupferman JV, Basu J, Russo MJ, Guevarra J, Cheung SK, Siegelbaum SA. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 2014; 158:1335-1347. [PMID: 25201528 DOI: 10.1016/j.cell.2014.07.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.
Collapse
Affiliation(s)
- Justine V Kupferman
- Department of Biology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jayeeta Basu
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Marco J Russo
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jenieve Guevarra
- Department of Biology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Stephanie K Cheung
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Department of Pharmacology, Kavli Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
4
|
Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, Glaser JI, Amodei D, Stranges PB, Kalhor R, Dalrymple DA, Seo D, Alon E, Maharbiz MM, Carmena JM, Rabaey JM, Boyden ES, Church GM, Kording KP. Physical principles for scalable neural recording. Front Comput Neurosci 2013; 7:137. [PMID: 24187539 PMCID: PMC3807567 DOI: 10.3389/fncom.2013.00137] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power-bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices.
Collapse
Affiliation(s)
- Adam H. Marblestone
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
| | | | - Yael G. Maguire
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
- Plum Labs LLCCambridge, MA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadena, CA, USA
| | | | - Joshua I. Glaser
- Interdepartmental Neuroscience Program, Northwestern UniversityChicago, IL, USA
| | - Dario Amodei
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Reza Kalhor
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - David A. Dalrymple
- Biophysics Program, Harvard UniversityBoston, MA, USA
- NemaloadSan Francisco, CA, USA
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Dongjin Seo
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Elad Alon
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Michel M. Maharbiz
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Jose M. Carmena
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at BerkeleyBerkeley, CA, USA
| | - Jan M. Rabaey
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Edward S. Boyden
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
- Departments of Brain and Cognitive Sciences and Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - George M. Church
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - Konrad P. Kording
- Departments of Physical Medicine and Rehabilitation and of Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Sensory Motor Performance Program, The Rehabilitation Institute of ChicagoChicago, IL, USA
| |
Collapse
|
5
|
Sykes M, Makowiecki K, Rodger J. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons. F1000Res 2013; 2:180. [PMID: 24627788 PMCID: PMC3938248 DOI: 10.12688/f1000research.2-180.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/22/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2 (-/-) and wildtype (C57BI/6j) mice (n=10 per genotype) undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.
Collapse
Affiliation(s)
- Matthew Sykes
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Kalina Makowiecki
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Crawley, Australia
| |
Collapse
|
6
|
KIF21A-mediated axonal transport and selective endocytosis underlie the polarized targeting of NCKX2. J Neurosci 2012; 32:4102-17. [PMID: 22442075 DOI: 10.1523/jneurosci.6331-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that K(+)-dependent Na(+)/Ca(2+) exchanger (NCKX) is a major calcium clearance mechanism at the large axon terminals of central neurons, whereas their somata display little NCKX activity. We investigated mechanisms underlying the axonal polarization of NCKX2 in rat hippocampal neurons. We identified NCKX2 as the first neuron-specific cargo molecule of kinesin family member 21A (KIF21A). The intracellular loop of NCKX2 specifically interacted with the WD-40 repeats, a putative cargo-binding domain, of KIF21A. Dominant-negative mutant or depletion of KIF21A inhibited the transport of NCKX2-GFP to axon fibers. Knockdown of KIF21A caused calcium dysregulation at axonal boutons but not at somatodendritic regions. Despite the axonal polarization of the NCKX activity, both somatodendritic and axonal regions were immunoreactive to NCKX2. The surface expression of NCKX2 revealed by live-cell immunocytochemistry, however, displayed highly polarized distribution to the axon. Inhibition of endocytosis increased the somatodendritic surface NCKX2 and thus abolished the axonal polarization of surface NCKX2. These results indicate that KIF21A-mediated axonal transport and selective somatodendritic endocytosis underlie the axonal polarized surface expression of NCKX2.
Collapse
|
7
|
He S, Shao LR, Rittase WB, Bausch SB. Increased Kv1 channel expression may contribute to decreased sIPSC frequency following chronic inhibition of NR2B-containing NMDAR. Neuropsychopharmacology 2012; 37:1338-56. [PMID: 22218089 PMCID: PMC3327840 DOI: 10.1038/npp.2011.320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 11/29/2011] [Indexed: 12/20/2022]
Abstract
Numerous studies have documented the effects of chronic N-methyl-D-aspartate receptor (NMDAR) blockade on excitatory circuits, but the effects on inhibitory circuitry are not well studied. NR2A- and NR2B-containing NMDARs play differential roles in physiological processes, but the consequences of chronic NR2A- or NR2B-containing NMDAR inhibition on glutamatergic and GABAergic neurotransmission are unknown. We investigated altered GABAergic neurotransmission in dentate granule cells and interneurons following chronic treatment with the NR2B-selective antagonist, Ro25,6981, the NR2A-prefering antagonist, NVP-AAM077, or the non-subunit-selective NMDAR antagonist, D-APV, in organotypic hippocampal slice cultures. Electrophysiological recordings revealed large reductions in spontaneous inhibitory postsynaptic current (sIPSC) frequency in both granule cells and interneurons following chronic Ro25,6981 treatment, which was associated with minimally altered sIPSC amplitude, miniature inhibitory postsynaptic current (mIPSC) frequency, and mIPSC amplitude, suggesting diminished action potential-dependent GABA release. Chronic NVP-AAM077 or D-APV treatment had little effect on these measures. Reduced sIPSC frequency did not arise from downregulated GABA(A)R, altered excitatory or inhibitory drive to interneurons, altered interneuron membrane properties, increased failure rate, decreased action potential-dependent release probability, or mGluR/GABA(B) receptor modulation of GABA release. However, chronic Ro25,6981-mediated reductions in sIPSC frequency were occluded by the K+ channel blockers, dendrotoxin, margatoxin, and agitoxin, but not dendrotoxin-K or XE991. Immunohistochemistry also showed increased Kv1.2, Kv1.3, and Kv1.6 in the dentate molecular layer following chronic Ro25,6981 treatment. Our findings suggest that increased Kv1 channel expression/function contributed to diminished action potential-dependent GABA release following chronic NR2B-containing NMDAR inhibition and that these Kv1 channels may be heteromeric complexes containing Kv1.2, Kv1.3, and Kv1.6.
Collapse
Affiliation(s)
- Shuijin He
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Li-Rong Shao
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - W Bradley Rittase
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Suzanne B Bausch
- Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, MD, USA
- Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| |
Collapse
|
8
|
Chtchetinin J, Gifford WD, Li S, Paznekas WA, Jabs EW, Lai A. Tyrosine-dependent basolateral targeting of human connexin43-eYFP in Madin-Darby canine kidney cells can be disrupted by the oculodentodigital dysplasia mutation L90V. FEBS J 2009; 276:6992-7005. [PMID: 19860828 PMCID: PMC2805759 DOI: 10.1111/j.1742-4658.2009.07407.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polarized membrane sorting of connexin 43 (Cx43) has not been well-characterized. Based on the presence of a putative sorting signal, YKLV(286-289), within its C-terminal cytoplasmic domain, we hypothesized that Cx43 is selectively expressed on the basolateral surface of Madin-Darby canine kidney (MDCK) cells in a tyrosine-dependent manner. We generated stable MDCK cell lines expressing human wild-type and mutant Cx43-eYFP, and analyzed the membrane localization of Cx43-eYFP within polarized monolayers using confocal microscopy and selective surface biotinylation. We found that wild-type Cx43-eYFP was selectively targeted to the basolateral membrane domain of MDCK cells. Substitution of alanine for Y286 disrupted basolateral targeting of Cx43-eYFP. Additionally, substitution of a sequence containing the transferrin receptor internalization signal, LSYTRF, for PGYKLV(284-289) also disrupted basolateral targeting. Taken together, these results indicate that Y286 in its native amino acid sequence is necessary for targeting Cx43-eYFP to the basolateral membrane domain of MDCK cells. To determine whether the F52dup or L90V oculodentodigital dysplasia-associated mutations could affect polarized sorting of Cx43-eYFP, we analyzed the expression of these Cx43-eYFP mutant constructs and found that the L90V mutation disrupted basolateral expression. These findings raise the possibility that some oculodentodigitial dysplasia-associated mutations contribute to disease by altering polarized targeting of Cx43.
Collapse
Affiliation(s)
- Jana Chtchetinin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Henry E Singleton Brain Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wes D. Gifford
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Henry E Singleton Brain Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sichen Li
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Henry E Singleton Brain Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William A. Paznekas
- Institute of Genetic Medicine, Johns Hopkins University, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Ethylin Wang Jabs
- Institute of Genetic Medicine, Johns Hopkins University, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1428 Madison Avenue, New York, NY 10029-6574, USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Henry E Singleton Brain Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Bel C, Oguievetskaia K, Pitaval C, Goutebroze L, Faivre-Sarrailh C. Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 2009; 122:3403-13. [PMID: 19706678 DOI: 10.1242/jcs.050526] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Contactin-associated protein 2 (Caspr2) is a neuronal membrane protein that is mutated in autism and related disorders. Although it is highly enriched at juxtaparanodes of Ranvier where it is essential for Shaker-type K(+) channel clustering, little is known about its function and regulation. In the present study, we examined the polarized expression of Caspr2 in hippocampal neurons using extracellular hemagglutinin (HA)-tagged Caspr2 constructs. We found that Caspr2 was targeted to the axonal surface, but colocalized with early endosomes in the somatodendritic compartment. The inhibition of endocytosis using a Dynamin-1 mutant or treatment with Dynasore prevented Caspr2 internalization from the dendrites and cell body. We identified a short sequence included into the 4.1B-binding domain that is required for the endocytosis of Caspr2. This sequence contains a protein kinase C (PKC) substrate motif on Thr1292, and point mutation of this residue or treatment with a PKC inhibitor prevented the somatodendritic internalization of Caspr2. Thus, the PKC-dependent trafficking of Caspr2 underlies its polarized expression in hippocampal neurons.
Collapse
Affiliation(s)
- Christophe Bel
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231 CNRS, Université de la Méditerranée Aix-Marseille II, Marseille 13916, France
| | | | | | | | | |
Collapse
|
10
|
Labasque M, Faivre-Sarrailh C. GPI-anchored proteins at the node of Ranvier. FEBS Lett 2009; 584:1787-92. [PMID: 19703450 DOI: 10.1016/j.febslet.2009.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/06/2023]
Abstract
Contactin and TAG-1 are glycan phosphatidyl inositol (GPI)-anchored cell adhesion molecules that play a crucial role in the organization of axonal subdomains at the node of Ranvier of myelinating fibers. Contactin and TAG-1 mediate axo-glial selective interactions in association with Caspr-family molecules at paranodes and juxtaparanodes, respectively. How membrane proteins can be confined in these neighbouring domains along the axon has been the subject of intense investigations. This review will specifically examine the properties conferred by the lipid microenvironment to regulate trafficking and selective association of these axo-glial complexes. Increasing evidences from genetic and neuropathological models point to a role of lipid rafts in the formation or stabilization of the paranodal junctions.
Collapse
Affiliation(s)
- Marilyne Labasque
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231 CNRS, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
11
|
Arnold DB. Actin and microtubule-based cytoskeletal cues direct polarized targeting of proteins in neurons. Sci Signal 2009; 2:pe49. [PMID: 19671926 DOI: 10.1126/scisignal.283pe49] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal proteins are transported to either the axon or dendrites through the action of kinesin motors; however, understanding of how cytoskeletal elements steer these cargo-motor complexes to one compartment or the other has remained elusive. Three recent developments-the discovery of an actin-based filter within the axon initial segment, the identification of the pivotal role played by myosin motors in dendritic targeting, and the determination of the properties of a kinesin motor that cause it to prefer axonal to dendritic microtubules-have now provided a structural framework for understanding polarized targeting in neurons.
Collapse
Affiliation(s)
- Don B Arnold
- Department of Biology and Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Schanuel SM, Bell KA, Henderson SC, McQuiston AR. Heterologous expression of the invertebrate FMRFamide-gated sodium channel as a mechanism to selectively activate mammalian neurons. Neuroscience 2008; 155:374-86. [PMID: 18598740 DOI: 10.1016/j.neuroscience.2008.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 01/01/2023]
Abstract
Considerable effort has been directed toward the development of methods to selectively activate specific subtypes of neurons. Focus has been placed on the heterologous expression of proteins that are capable of exciting neurons in which they are expressed. Here we describe the heterologous expression of the invertebrate FMRFamide (H-phenylalanine-methionine-arginine-phenylalanine-NH2) -gated sodium channel from Helix aspersa (HaFaNaC) in hippocampal slice cultures. HaFaNaC was co-expressed with a fluorescent protein (green fluorescent protein (GFP), red fluorescent protein from Discosoma sp (dsRed) or mutated form of red fluorescent protein from Discosoma sp (tdTomato)) in CA3 pyramidal neurons of rat hippocampal slice cultures using single cell electroporation. Pressure application of the agonist FMRFamide to HaFaNaC-expressing neuronal somata produced large prolonged depolarizations and bursts of action potentials (APs). FMRFamide responses were inhibited by amiloride (100 microM). In contrast, pressure application of FMRFamide to the axons of neurons expressing HaFaNaC produced no response. Fusion of GFP to the N-terminus of HaFaNaC showed that GFP-HaFaNaC was absent from axons. Bath application of FMRFamide produced persistent AP firing in HaFaNaC-expressing neurons. This FMRFamide-induced increase in the frequency of APs was dose-dependent. The concentrations of FMRFamide required to activate HaFaNaC-expressing neurons were below that required to activate the homologous acid sensing ion channel normally found in mammalian neurons. Furthermore, the mammalian neuropeptides neuropeptide FF and RFamide-related peptide-1, which have amidated RF C-termini, did not affect HaFaNaC-expressing neurons. Antagonists of NPFF receptors (BIBP3226) also had no effect on HaFaNaC. Therefore, we suggest that heterologous-expression of HaFaNaC in mammalian neurons could be a useful method to selectively and persistently excite specific subtypes of neurons in intact nervous tissue.
Collapse
Affiliation(s)
- S M Schanuel
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
13
|
Yap CC, Nokes RL, Wisco D, Anderson E, Fölsch H, Winckler B. Pathway selection to the axon depends on multiple targeting signals in NgCAM. J Cell Sci 2008; 121:1514-25. [PMID: 18411247 DOI: 10.1242/jcs.022442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Similar to most differentiated cells, both neurons and epithelial cells elaborate distinct plasma membrane domains that contain different membrane proteins. We have previously shown that the axonal cell-adhesion molecule L1/NgCAM accumulates on the axonal surface by an indirect transcytotic pathway via somatodendritic endosomes. MDCK epithelial cells similarly traffic NgCAM to the apical surface by transcytosis. In this study, we map the signals in NgCAM required for routing via the multi-step transcytotic pathway. We identify both a previously mapped tyrosine-based signal as a sufficient somatodendritic targeting signal, as well as a novel axonal targeting signal in the cytoplasmic tail of NgCAM. The axonal signal is glycine and serine rich, but only the glycine residues are required for activity. The somatodendritic signal is cis-dominant and needs to be inactivated in order for the axonal signal to be executed. Additionally, we show that the axonal cytoplasmic signal promotes apical targeting in MDCK cells. Transcytosis of NgCAM to the axon thus requires the sequential regulated execution of multiple targeting signals.
Collapse
Affiliation(s)
- Chan Choo Yap
- University of Virginia Medical School, Department of Neuroscience, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
14
|
Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits. Neuron 2008; 57:634-60. [PMID: 18341986 DOI: 10.1016/j.neuron.2008.01.002] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/24/2007] [Accepted: 01/01/2008] [Indexed: 11/29/2022]
Abstract
Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
15
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Cusdin FS, Clare JJ, Jackson AP. Trafficking and cellular distribution of voltage-gated sodium channels. Traffic 2007; 9:17-26. [PMID: 17988224 DOI: 10.1111/j.1600-0854.2007.00673.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrical excitability in cells such as neurons and myocytes depends not only upon the expression of voltage-gated sodium channels but also on their correct targeting within the plasma membrane. Placing sodium channels within a broader cell biological context is beginning to shed new light on a variety of important questions such as the integration of neuronal signaling. Mutations that affect sodium channel trafficking have been shown to underlie several life-threatening conditions including cardiac arrhythmias, revealing an important clinical context to these studies.
Collapse
Affiliation(s)
- Fiona S Cusdin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|