1
|
Cellular Distribution of Brain Aquaporins and Their Contribution to Cerebrospinal Fluid Homeostasis and Hydrocephalus. Biomolecules 2022; 12:biom12040530. [PMID: 35454119 PMCID: PMC9025855 DOI: 10.3390/biom12040530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
Brain aquaporins facilitate the movement of water between the four water compartments: blood, cerebrospinal fluid, interstitial fluid, and intracellular fluid. This work analyzes the expression of the four most abundant aquaporins (AQPs) (AQP1, AQP4, AQP9, and AQP11) in the brains of mice and discuss their contribution to hydrocephalus. We analyzed available data from single-cell RNA sequencing of the central nervous system of mice to describe the expression of aquaporins and compare their distribution with that based on qPCR, western blot, and immunohistochemistry assays. Expression of AQP1 in the apical cell membrane of choroid plexus epithelial cells and of AQP4 in ependymal cells, glia limitans, and astrocyte processes in the pericapillary end foot is consistent with the involvement of both proteins in cerebrospinal fluid homeostasis. The expression of both aquaporins compensates for experimentally induced hydrocephalus in the animals. Recent data demonstrate that hypoxia in aged animals alters AQP4 expression in the choroidal plexus and cortex, increasing the ventricle size and intraventricular pressure. Cerebral distensibility is reduced in parallel with a reduction in cerebrospinal fluid drainage and cognitive deterioration. We propose that aged mice chronically exposed to hypoxia represent an excellent experimental model for studying the pathophysiological characteristics of idiopathic normal pressure hydrocephalus and roles for AQPs in such disease.
Collapse
|
2
|
Zuniga-Hertz JP, Patel HH. The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Front Physiol 2019; 10:1340. [PMID: 31736773 PMCID: PMC6828933 DOI: 10.3389/fphys.2019.01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
The increase in atmospheric oxygen levels imposed significant environmental pressure on primitive organisms concerning intracellular oxygen concentration management. Evidence suggests the rise of cholesterol, a key molecule for cellular membrane organization, as a cellular strategy to restrain free oxygen diffusion under the new environmental conditions. During evolution and the increase in organismal complexity, cholesterol played a pivotal role in the establishment of novel and more complex functions associated with lipid membranes. Of these, caveolae, cholesterol-rich membrane domains, are signaling hubs that regulate important in situ functions. Evolution resulted in complex respiratory systems and molecular response mechanisms that ensure responses to critical events such as hypoxia facilitated oxygen diffusion and transport in complex organisms. Caveolae have been structurally and functionally associated with respiratory systems and oxygen diffusion control through their relationship with molecular response systems like hypoxia-inducible factors (HIF), and particularly as a membrane-localized oxygen sensor, controlling oxygen diffusion balanced with cellular physiological requirements. This review will focus on membrane adaptations that contribute to regulating oxygen in living systems.
Collapse
Affiliation(s)
- Juan Pablo Zuniga-Hertz
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
AQP1 and AQP4 Contribution to Cerebrospinal Fluid Homeostasis. Cells 2019; 8:cells8020197. [PMID: 30813473 PMCID: PMC6406452 DOI: 10.3390/cells8020197] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
Aquaporin 1 (AQP1), expressed in epithelial cells of the choroid plexus, and aquaporin 4 (AQP4) present in ependymal cells and glia limitants have been proposed to play a significant role in cerebrospinal fluid (CSF) production and homeostasis. However, the specific contribution of each water channel to these functions remains unknown, being a subject of debate during the last years. Here, we analyzed in detail how AQP1 and AQP4 participate in different aspects of the CSF homeostasis such as the load and drainage of ventricles, and further explored if these proteins play a role in the ventricular compliance. To do that, we carried out records of intraventricular pressure and CSF outflow, and evaluated ventricular volume by magnetic resonance imaging in AQP1−/−, AQP4−/−, double AQP1−/−-AQP4−/− knock out and wild type mice controls. The analysis performed clearly showed that both AQPs have a significant participation in the CSF production, and additionally revealed that the double AQP1-AQP4 mutation alters the CSF drainage and the ventricular compliance. The data reported here indicate a significant extra-choroidal CSF formation mediated by AQP4, supporting the idea of an important and constant CSF production/absorption process, sustained by efflux/influx of water between brain capillaries and interstitial fluid. Moreover, our results suggest the participation of AQPs in structural functions also related with CSF homeostasis such as the distensibility capacity of the ventricular system.
Collapse
|
4
|
Trillo-Contreras JL, Ramírez-Lorca R, Hiraldo-González L, Sánchez-Gomar I, Galán-Cobo A, Suárez-Luna N, Sánchez de Rojas-de Pedro E, Toledo-Aral JJ, Villadiego J, Echevarría M. Combined effects of aquaporin-4 and hypoxia produce age-related hydrocephalus. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3515-3526. [PMID: 30293570 DOI: 10.1016/j.bbadis.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
Aquaporin-4, present in ependymal cells, in glia limiting and abundantly in pericapillary astrocyte foot processes, and aquaporin-1, expressed in choroid plexus epithelial cells, play an important role in cerebrospinal fluid production and may be involved in the pathophysiology of age-dependent hydrocephalus. The finding that brain aquaporins expression is regulated by low oxygen tension led us to investigate how hypoxia and elevated levels of cerebral aquaporins may result in an increase in cerebrospinal fluid production that could be associated with a hydrocephalic condition. Here we have explored, in young and aged mice exposed to hypoxia, whether aquaporin-4 and aquaporin-1 participate in the development of age-related hydrocephalus. Choroid plexus, striatum, cortex and ependymal tissue were analyzed separately both for mRNA and protein levels of aquaporins. Furthermore, parameters such as total ventricular volume, intraventricular pressure, cerebrospinal fluid outflow rate, ventricular compliance and cognitive function were studied in wild type, aquaporin-1 and aquaporin-4 knock-out animals subjected to hypoxia or normoxia. Our data demonstrate that hypoxia is involved in the development of age-related hydrocephalus by a process that depends on aquaporin-4 channels as a main route for cerebrospinal fluid movement. Significant increases in aquaporin-4 expression that occur over the course of animal aging, together with a reduced cerebrospinal fluid outflow rate and ventricular compliance, contribute to produce more severe hydrocephalus related to hypoxic events in aged mice, with a notable impairment in cognitive function. These results indicate that physiological events and/or pathological conditions presenting with cerebral hypoxia/ischemia contribute to the development of chronic adult hydrocephalus.
Collapse
Affiliation(s)
- José Luis Trillo-Contreras
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Reposo Ramírez-Lorca
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Laura Hiraldo-González
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Ismael Sánchez-Gomar
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain
| | - Ana Galán-Cobo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain
| | - Nela Suárez-Luna
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Eva Sánchez de Rojas-de Pedro
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain.
| | - Miriam Echevarría
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain.
| |
Collapse
|
5
|
Dan C, Rui C, Jinghua H, Yuan G, Liping W, Wei J, Xiongzhi W. Synergetic effects of aqueous extracts of Fuzi (Radix Aconiti Lateralis Preparata) and Tubeimu (Rhizoma Bolbostemmatis) on MDA-MB-231 and SKBR3 cells. J TRADIT CHIN MED 2016; 36:113-24. [DOI: 10.1016/s0254-6272(16)30017-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Galán-Cobo A, Ramírez-Lorca R, Echevarría M. Role of aquaporins in cell proliferation: What else beyond water permeability? Channels (Austin) 2016; 10:185-201. [PMID: 26752515 PMCID: PMC4954585 DOI: 10.1080/19336950.2016.1139250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
In addition to the extensive data demonstrating the importance of mammalian AQPs for the movement of water and some small solutes across the cell membrane, there is now a growing body of evidence indicating the involvement of these proteins in numerous cellular processes seemingly unrelated, at least some of them in a direct way, to their canonical function of water permeation. Here, we have presented a broad range of evidence demonstrating that these proteins have a role in cell proliferation by various different mechanisms, namely, by allowing fast cell volume regulation during cell division; by affecting progression of cell cycle and helping maintain the balance between proliferation and apoptosis, and by crosstalk with other cell membrane proteins or transcription factors that, in turn, modulate progression of the cell cycle or regulate biosynthesis pathways of cell structural components. In the end, however, after discussing all these data that strongly support a role for AQPs in the cell proliferation process, it remains impossible to conclude that all these other functions attributed to AQPs occur completely independently of their water permeability, and there is a need for new experiments designed specifically to address this interesting issue.
Collapse
Affiliation(s)
- Ana Galán-Cobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| | - Reposo Ramírez-Lorca
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica), Seville, Spain
| |
Collapse
|
7
|
Galán-Cobo A, Ramírez-Lorca R, Toledo-Aral JJ, Echevarría M. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression. J Cell Physiol 2015; 231:243-56. [DOI: 10.1002/jcp.25078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Galán-Cobo
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
| | - Reposo Ramírez-Lorca
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
- Biomedical Research Centre Network for Neurodegenerative Diseases (CIBERNED); Madrid Spain
| | - Miriam Echevarría
- Institute of Biomedicine of Seville (IBiS); Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla (Departamento de Fisiología Médica y Biofísica); Seville Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES); Madrid Spain
| |
Collapse
|
8
|
Netti VA, Vatrella MC, Chamorro MF, Rosón MI, Zotta E, Fellet AL, Balaszczuk AM. Comparison of cardiovascular aquaporin-1 changes during water restriction between 25- and 50-day-old rats. Eur J Nutr 2013; 53:287-95. [DOI: 10.1007/s00394-013-0527-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
|
9
|
De Caro R, Macchi V, Sfriso MM, Porzionato A. Structural and neurochemical changes in the maturation of the carotid body. Respir Physiol Neurobiol 2013; 185:9-19. [DOI: 10.1016/j.resp.2012.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/16/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
|
10
|
Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1α. PLoS One 2011; 6:e28385. [PMID: 22174795 PMCID: PMC3233559 DOI: 10.1371/journal.pone.0028385] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/07/2011] [Indexed: 01/11/2023] Open
Abstract
Aquaporin-1 (AQP1) is a water channel that is highly expressed in tissues with rapid O2 transport. It has been reported that this protein contributes to gas permeation (CO2, NO and O2) through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5′ proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl2) and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases.
Collapse
|