1
|
Giommi A, Gurgel ARB, Smith GL, Workman AJ. Does the small conductance Ca 2+-activated K + current I SK flow under physiological conditions in rabbit and human atrial isolated cardiomyocytes? J Mol Cell Cardiol 2023; 183:70-80. [PMID: 37704101 DOI: 10.1016/j.yjmcc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 μM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 μM ICAGEN (at [Ca2+]i ∼ 100-450 nM), nor 100 nM apamin ([Ca2+]i ∼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 μM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 μM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 μM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.
Collapse
Affiliation(s)
- Alessandro Giommi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Aline R B Gurgel
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Resting membrane potential is less negative in trabeculae from right atrial appendages of women, but action potential duration does not shorten with age. J Mol Cell Cardiol 2023; 176:1-10. [PMID: 36681268 DOI: 10.1016/j.yjmcc.2023.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
AIMS The incidence of atrial fibrillation (AF) increases with age. Women have a lower risk. Little is known on the impact of age, sex and clinical variables on action potentials (AP) recorded in right atrial tissue obtained during open heart surgery from patients in sinus rhythm (SR) and in longstanding AF. We here investigated whether age or sex have an impact on the shape of AP recorded in vitro from right atrial tissue. METHODS We performed multivariable analysis of individual AP data from trabeculae obtained during heart surgery of patients in SR (n = 320) or in longstanding AF (n = 201). AP were recorded by sharp microelectrodes at 37 °C at 1 Hz. Impact of clinical variables were modeled using a multivariable mixed model regression. RESULTS In SR, AP duration at 90% repolarization (APD90) increased with age. Lower ejection fraction and higher body mass index were associated with smaller action potential amplitude (APA) and maximum upstroke velocity (Vmax). The use of beta-blockers was associated with larger APD90. In tissues from women, resting membrane potential was less negative and APA as well as Vmax were smaller. Besides shorter APD20 in elderly patients, effects of age and sex on atrial AP were lost in AF. CONCLUSION The higher probability to develop AF at advanced age cannot be explained by a shortening in APD90. Less negative RMP and lower upstroke velocity might contribute to lower incidence of AF in women, which may be of clinical relevance.
Collapse
|
3
|
Saxena P, Myles RC, Smith GL, Workman AJ. Adrenoceptor sub-type involvement in Ca 2+ current stimulation by noradrenaline in human and rabbit atrial myocytes. Pflugers Arch 2022; 474:1311-1321. [PMID: 36131146 DOI: 10.1007/s00424-022-02746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and β-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (β1 + β2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (β1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (β2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating β1- and α1-ARs in both human and rabbit, with a β2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.
Collapse
Affiliation(s)
- Priyanka Saxena
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rachel C Myles
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Godfrey L Smith
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Antony J Workman
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
4
|
Lindner M, Gilhooley MJ, Peirson SN, Hughes S, Hankins MW. The functional characteristics of optogenetic gene therapy for vision restoration. Cell Mol Life Sci 2021; 78:1597-1613. [PMID: 32728765 PMCID: PMC7904736 DOI: 10.1007/s00018-020-03597-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Optogenetic strategies to restore vision in patients blind from end-stage retinal degenerations aim to render remaining retinal neurons light-sensitive. We present an innovative combination of multi-electrode array recordings together with a complex pattern-generating light source as a toolset to determine the extent to which neural retinal responses to complex light stimuli can be restored following viral delivery of red-shifted channelrhodopsin in the retinally degenerated mouse. Our data indicate that retinal output level spatiotemporal response characteristics achieved by optogenetic gene therapy closely parallel those observed for normal mice but equally reveal important limitations, some of which could be mitigated using bipolar-cell targeted gene-delivery approaches. As clinical trials are commencing, these data provide important new information on the capacity and limitations of channelrhodopsin-based gene therapies. The toolset we established enables comparing optogenetic constructs and stem-cell-based techniques, thereby providing an efficient and sensitive starting point to identify future approaches for vision restoration.
Collapse
Affiliation(s)
- Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Marburg, Germany.
| | - Michael J Gilhooley
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Neuroophthalmology, Institute of Ophthalmology, London, UK
| | - Stuart N Peirson
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven Hughes
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark W Hankins
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Saadeh K, Shivkumar K, Jeevaratnam K. Targeting the β-adrenergic receptor in the clinical management of congenital long QT syndrome. Ann N Y Acad Sci 2020; 1474:27-46. [PMID: 32901453 DOI: 10.1111/nyas.14425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/10/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
Abstract
The long QT syndrome (LQTS) is largely treated pharmacologically with β-blockers, despite the role of sympathetic activity in LQTS being poorly understood. Using the trigger-substrate model of cardiac arrhythmias in this review, we amalgamate current experimental and clinical data from both animal and human studies to explain the mechanism of adrenergic stimulation and blockade on LQT arrhythmic risk and hence assess the efficacy of β-adrenoceptor blockade in the management of LQTS. In LQTS1 and LQTS2, sympathetic stimulation increases arrhythmic risk by enhancing early afterdepolarizations and transmural dispersion of repolarization. β-Blockers successfully reduce cardiac events by reducing these triggers and substrates; however, these effects are less marked in LQTS2 compared with LQTS1. In LQTS3, clinical and experimental investigations of the effects of sympathetic stimulation and β-blocker use have produced contradictory findings, resulting in significant clinical uncertainty. We offer explanations for these contradicting results relating to study sample size, the dose of the β-blocker administered associated with its off-target Na+ channel effects, as well as the type of β-blocker used. We conclude that the antiarrhythmic efficacy of β-blockers is a genotype-specific phenomenon, and hence the use of β-blockers in clinical practice should be genotype dependent.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Centre, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
6
|
Mohindra R, Lin S. The drugs don’t matter: Cardiovascular drugs have minimal effects on amplitude spectral area during ventricular fibrillation. Resuscitation 2020; 151:205-207. [DOI: 10.1016/j.resuscitation.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
|
7
|
Yuxiang L, Fujiu K. Frozen Heart and Arrhythmia. Int Heart J 2019; 60:1019-1021. [PMID: 31564707 DOI: 10.1536/ihj.19-407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Liu Yuxiang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
8
|
Filos D, Tachmatzidis D, Maglaveras N, Vassilikos V, Chouvarda I. Understanding the Beat-to-Beat Variations of P-Waves Morphologies in AF Patients During Sinus Rhythm: A Scoping Review of the Atrial Simulation Studies. Front Physiol 2019; 10:742. [PMID: 31275161 PMCID: PMC6591370 DOI: 10.3389/fphys.2019.00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
The remarkable advances in high-performance computing and the resulting increase of the computational power have the potential to leverage computational cardiology toward improving our understanding of the pathophysiological mechanisms of arrhythmias, such as Atrial Fibrillation (AF). In AF, a complex interaction between various triggers and the atrial substrate is considered to be the leading cause of AF initiation and perpetuation. In electrocardiography (ECG), P-wave is supposed to reflect atrial depolarization. It has been found that even during sinus rhythm (SR), multiple P-wave morphologies are present in AF patients with a history of AF, suggesting a higher dispersion of the conduction route in this population. In this scoping review, we focused on the mechanisms which modify the electrical substrate of the atria in AF patients, while investigating the existence of computational models that simulate the propagation of the electrical signal through different routes. The adopted review methodology is based on a structured analytical framework which includes the extraction of the keywords based on an initial limited bibliographic search, the extensive literature search and finally the identification of relevant articles based on the reference list of the studies. The leading mechanisms identified were classified according to their scale, spanning from mechanisms in the cell, tissue or organ level, and the produced outputs. The computational modeling approaches for each of the factors that influence the initiation and the perpetuation of AF are presented here to provide a clear overview of the existing literature. Several levels of categorization were adopted while the studies which aim to translate their findings to ECG phenotyping are highlighted. The results denote the availability of multiple models, which are appropriate under specific conditions. However, the consideration of complex scenarios taking into account multiple spatiotemporal scales, personalization of electrophysiological and anatomical models and the reproducibility in terms of ECG phenotyping has only partially been tackled so far.
Collapse
Affiliation(s)
- Dimitrios Filos
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, United States
| | - Vassilios Vassilikos
- 3rd Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Colman MA, Saxena P, Kettlewell S, Workman AJ. Description of the Human Atrial Action Potential Derived From a Single, Congruent Data Source: Novel Computational Models for Integrated Experimental-Numerical Study of Atrial Arrhythmia Mechanisms. Front Physiol 2018; 9:1211. [PMID: 30245635 PMCID: PMC6137999 DOI: 10.3389/fphys.2018.01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: The development of improved diagnosis, management, and treatment strategies for human atrial fibrillation (AF) is a significant and important challenge in order to improve quality of life for millions and reduce the substantial social-economic costs of the condition. As a complex condition demonstrating high variability and relation to other cardiac conditions, the study of AF requires approaches from multiple disciplines including single-cell experimental electrophysiology and computational modeling. Models of human atrial cells are less well parameterized than those of the human ventricle or other mammal species, largely due to the inherent challenges in patch clamping human atrial cells. Such challenges include, frequently, unphysiologically depolarized resting potentials and thus injection of a compensatory hyperpolarizing current, as well as detecting certain ion currents which may be disrupted by the cell isolation process. The aim of this study was to develop a laboratory specific model of human atrial electrophysiology which reproduces exactly the conditions of isolated-cell experiments, including testing of multiple experimental interventions. Methods: Formulations for the primary ion currents characterized by isolated-cell experiments in the Workman laboratory were fit directly to voltage-clamp data; the fast sodium-current was parameterized based on experiments relating resting membrane potential to maximal action potential upstroke velocity; compensatory hyperpolarizing current was included as a constant applied current. These formulations were integrated with three independent human atrial cell models to provide a family of novel models. Extrapolated intact-cell models were developed through removal of the hyperpolarizing current and introduction of terminal repolarization potassium currents. Results: The isolated-cell models quantitatively reproduced experimentally measured properties of excitation in both control and pharmacological and dynamic-clamp interventions. Comparison of isolated and intact-cell models highlighted the importance of reproducing this cellular environment when comparing experimental and simulation data. Conclusion: We have developed a laboratory specific model of the human atrial cell which directly reproduces the experimental isolated-cell conditions and captures human atrial excitation properties. The model may be particularly useful for directly relating model to experiment, and offers a complementary tool to the available set of human atrial cell models with specific advantages resulting from the congruent input data source.
Collapse
Affiliation(s)
- Michael A Colman
- Leeds Computational Physiology Lab, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Priyanka Saxena
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Pandit SV, Workman AJ. Atrial Electrophysiological Remodeling and Fibrillation in Heart Failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:41-46. [PMID: 27812293 PMCID: PMC5089851 DOI: 10.4137/cmc.s39713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) causes complex, chronic changes in atrial structure and function, which can cause substantial electrophysiological remodeling and predispose the individual to atrial fibrillation (AF). Pharmacological treatments for preventing AF in patients with HF are limited. Improved understanding of the atrial electrical and ionic/molecular mechanisms that promote AF in these patients could lead to the identification of novel therapeutic targets. Animal models of HF have identified numerous changes in atrial ion currents, intracellular calcium handling, action potential waveform and conduction, as well as expression and signaling of associated proteins. These studies have shown that the pattern of electrophysiological remodeling likely depends on the duration of HF, the underlying cardiac pathology, and the species studied. In atrial myocytes and tissues obtained from patients with HF or left ventricular systolic dysfunction, the data on changes in ion currents and action potentials are largely equivocal, probably owing mainly to difficulties in controlling for the confounding influences of multiple variables, such as patient’s age, sex, disease history, and drug treatments, as well as the technical challenges in obtaining such data. In this review, we provide a summary and comparison of the main animal and human electrophysiological studies to date, with the aim of highlighting the consistencies in some of the remodeling patterns, as well as identifying areas of contention and gaps in the knowledge, which warrant further investigation.
Collapse
Affiliation(s)
- Sandeep V Pandit
- Department of Internal Medicine - Cardiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
SK channels and ventricular arrhythmias in heart failure. Trends Cardiovasc Med 2015; 25:508-14. [PMID: 25743622 DOI: 10.1016/j.tcm.2015.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
Abstract
Small-conductance Ca(2+)-activated K(+) (SK) currents are important in the repolarization of normal atrial (but not ventricular) cardiomyocytes. However, recent studies showed that the SK currents are upregulated in failing ventricular cardiomyocytes, along with increased SK channel protein expression and enhanced sensitivity to intracellular Ca(2+). The SK channel activation may be either anti-arrhythmic or pro-arrhythmic, depending on the underlying clinical situations. While the SK channel is a new target of anti-arrhythmic therapy, drug safety is still one of the major concerns.
Collapse
|
12
|
Kharche SR, Stary T, Colman MA, Biktasheva IV, Workman AJ, Rankin AC, Holden AV, Zhang H. Effects of human atrial ionic remodelling by β-blocker therapy on mechanisms of atrial fibrillation: a computer simulation. Europace 2014; 16:1524-1533. [PMID: 25085203 PMCID: PMC4640177 DOI: 10.1093/europace/euu084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Atrial anti-arrhythmic effects of β-adrenoceptor antagonists (β-blockers) may involve both a suppression of pro-arrhythmic effects of catecholamines, and an adaptational electrophysiological response to chronic β-blocker use; so-called 'pharmacological remodelling'. In human atrium, such remodelling decreases the transient outward (Ito) and inward rectifier (IK1) K(+) currents, and increases the cellular action potential duration (APD) and effective refractory period (ERP). However, the consequences of these changes on mechanisms of genesis and maintenance of atrial fibrillation (AF) are unknown. Using mathematical modelling, we tested the hypothesis that the long-term adaptational decrease in human atrial Ito and IK1 caused by chronic β-blocker therapy, i.e. independent of acute electrophysiological effects of β-blockers, in an otherwise un-remodelled atrium, could suppress AF. METHODS AND RESULTS Contemporarily, biophysically detailed human atrial cell and tissue models were used to investigate effects of the β-blocker-based pharmacological remodelling. Chronic β-blockade remodelling prolonged atrial cell APD and ERP. The incidence of small amplitude APD alternans in the CRN model was reduced. At the 1D tissue level, β-blocker remodelling decreased the maximum pacing rate at which APs could be conducted. At the three-dimensional organ level, β-blocker remodelling reduced the life span of re-entry scroll waves. CONCLUSION This study improves our understanding of the electrophysiological mechanisms of AF suppression by chronic β-blocker therapy. Atrial fibrillation suppression may involve a reduced propensity for maintenance of re-entrant excitation waves, as a consequence of increased APD and ERP.
Collapse
Affiliation(s)
- Sanjay R Kharche
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Tomas Stary
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Michael A Colman
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Irina V Biktasheva
- Department of Computer Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew C Rankin
- School of Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS6 9JT, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
14
|
Inada S, Ono T, Shibata N, Iwata M, Haraguchi R, Ashihara T, Mitsui K, Boyett MR, Dobrzynski H, Nakazawa K. Simulation study of complex action potential conduction in atrioventricular node. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:6850-3. [PMID: 24111318 DOI: 10.1109/embc.2013.6611131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atrioventricular (AV) node, which is located between the atria and ventricles of the heart, acts as important roles in cardiac excitation conduction between the two chambers. Although there are multiple conduction pathways in the AV node, the structure of the AV node has not been clarified. In this study, we constructed a one-dimensional model of the AV node and simulated excitation conduction between the right atrium and the bundle of His via the AV node. We also investigated several characteristics of the AV node: (1) responses of the AV node to high-rate excitation in the right atrium, (2) the AV nodal reentrant beat induced by premature stimulus, and (3) ventricular rate control during atrial fibrillation with various methods. Our simulation results suggest that multiple conduction pathways act as important roles in controlling the ventricular rate. The one-dimensional model constructed in this study may be useful to analyze complex conduction patterns in the AV node.
Collapse
|
15
|
González de la Fuente M, Barana A, Gómez R, Amorós I, Dolz-Gaitón P, Sacristán S, Atienza F, Pita A, Pinto Á, Fernández-Avilés F, Caballero R, Tamargo J, Delpón E. Chronic atrial fibrillation up-regulates β1-Adrenoceptors affecting repolarizing currents and action potential duration. Cardiovasc Res 2012; 97:379-88. [DOI: 10.1093/cvr/cvs313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Workman AJ, Marshall GE, Rankin AC, Smith GL, Dempster J. Transient outward K+ current reduction prolongs action potentials and promotes afterdepolarisations: a dynamic-clamp study in human and rabbit cardiac atrial myocytes. J Physiol 2012; 590:4289-305. [PMID: 22733660 DOI: 10.1113/jphysiol.2012.235986] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human atrial transient outward K(+) current (I(TO)) is decreased in a variety of cardiac pathologies, but how I(TO) reduction alters action potentials (APs) and arrhythmia mechanisms is poorly understood, owing to non-selectivity of I(TO) blockers. The aim of this study was to investigate effects of selective I(TO) changes on AP shape and duration (APD), and on afterdepolarisations or abnormal automaticity with β-adrenergic-stimulation, using the dynamic-clamp technique in atrial cells. Human and rabbit atrial cells were isolated by enzymatic dissociation, and electrical activity recorded by whole-cell-patch clamp (35-37°C). Dynamic-clamp-simulated I(TO) reduction or block slowed AP phase 1 and elevated the plateau, significantly prolonging APD, in both species. In human atrial cells, I(TO) block (100% I(TO) subtraction) increased APD(50) by 31%, APD(90) by 17%, and APD(-61 mV) (reflecting cellular effective refractory period) by 22% (P < 0.05 for each). Interrupting I(TO) block at various time points during repolarisation revealed that the APD(90) increase resulted mainly from plateau-elevation, rather than from phase 1-slowing or any residual I(TO). In rabbit atrial cells, partial I(TO) block (∼40% I(TO) subtraction) reversibly increased the incidence of cellular arrhythmic depolarisations (CADs; afterdepolarisations and/or abnormal automaticity) in the presence of the β-agonist isoproterenol (0.1 μm; ISO), from 0% to 64% (P < 0.05). ISO-induced CADs were significantly suppressed by dynamic-clamp increase in I(TO) (∼40% I(TO) addition). ISO+I(TO) decrease-induced CADs were abolished by β(1)-antagonism with atenolol at therapeutic concentration (1 μm). Atrial cell action potential changes from selective I(TO) modulation, shown for the first time using dynamic-clamp, have the potential to influence reentrant and non-reentrant arrhythmia mechanisms, with implications for both the development and treatment of atrial fibrillation.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
17
|
Grandi E, Workman AJ, Pandit SV. Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation. J Atr Fibrillation 2012; 4:495. [PMID: 28496736 DOI: 10.4022/jafib.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|