1
|
Zhang H, Pan X, Weigang C. Transcriptomics-driven exploration of genetic variation and peptide discovery in the sea anemones Anthopleura midori and Actinia equina. Sci Rep 2025; 15:12061. [PMID: 40200035 PMCID: PMC11978773 DOI: 10.1038/s41598-025-96976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Exploring sea anemone polypeptides enables us to understand the evolutionary history and ecological adaptation strategies of species at the microscopic level. More importantly, it aims to provide a solid theoretical foundation for drug development and biodiversity conservation research. Through systematic research, we discovered a total of 51 toxin sequences in species Anthopleura midori and Acyinia equina. The toxin sequences between the two species exhibited significant differences, with notable diversity observed among individuals. In terms of genetic diversity, species Anthopleura midori primarily exhibits variations due to single nucleotide polymorphisms (SNPs), whereas species Actinia equina shows frequent insertion and deletion events. In transcription factor analysis, both species Anthopleura midori and Actinia equina share common transcription factors TEA (TEA Domain Transcription Factor), SPL(Squamosa Promoter Binding Protein-like), and bHLH (Basic Helix-Loop-Helix). Notably. Notably, bHLH is highly expressed in Actinia equina, which may give it advantages in muscle and nervous system development. On the other hand, Anthopleura midori may rely on other transcription factors. Furthermore, by employing transcriptomics and mass spectrometry techniques, two new gene families were successfully identified, and five structurally novel cyclic peptides were predicted. Kinetic simulations further confirmed that the peptide segment B3a-c29555_c4_g4 binds primarily through hydrogen bonds and hydrophobic interactions with the Cav3.1 (PDB ID:6 KZO) protein, and this peptide has the potential to act as a channel modulator for Cav3.1. Overall, this research not only deepens our understanding of the genetic basis of toxin diversity but also highlights the great potential of these toxins in the development of novel drugs.
Collapse
Affiliation(s)
- Han Zhang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Dongguan, China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chen Weigang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Dongguan, China.
| |
Collapse
|
2
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Pierre M, Djemai M, Pouliot V, Poulin H, Gollob MH, Chahine M. Exploring SCN5A variants associated with atrial fibrillation in atrial cardiomyocytes derived from human induced pluripotent stem cells: A characterization study. Heart Rhythm 2024:S1547-5271(24)03303-4. [PMID: 39260661 DOI: 10.1016/j.hrthm.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) poses a major risk for heart failure, myocardial infarction, and stroke. Several studies have linked SCN5A variants to AF, but their precise mechanistic contribution remains unclear. Human induced pluripotent stem cells (hiPSCs) provide a promising platform for modeling AF-linked SCN5A variants and their functional alterations. OBJECTIVE The purpose of this study was to assess the electrophysiological impact of 3 AF-linked SCN5A variants (K1493R, M1875T, N1986K) identified in 3 unrelated individuals. METHODS CRISPR-Cas9 was used to generate a new hiPSC line in which NaV1.5 was knocked out. Following differentiation into specific atrial cardiomyocyte by using retinoic acid, the adult wild-type (WT) and 3 AF variants were introduced into the NaV1.5 knockout (KO) line through transfection. Subsequent analysis including molecular biology, optical mapping, and electrophysiology were performed. RESULTS The absence of NaV1.5 channels altered the expression of key cardiac genes. NaV1.5 KO atrial-like cardiomyocytes derived from human induced pluripotent stem cells displayed slower conduction velocities, altered action potential (AP) parameters, and impaired calcium transient propagation. The transfection of the WT channel restored sodium current density, AP characteristics and the expression of several cardiac genes. Among the AF variants, 1 induced a loss of function (N1986K) while the other 2 induced a gain of function in NaV1.5 channel activity. Cellular excitability alterations and early afterdepolarizations were observed in AF variants. CONCLUSION Our findings suggest that distinct alterations in NaV1.5 channel properties may trigger altered atrial excitability and arrhythmogenic activity in AF. Our KO model offers an innovative approach for investigating SCN5A variants in an adult human cardiac environment.
Collapse
Affiliation(s)
- Marion Pierre
- CERVO Brain Research Centre, Quebec City, Quebec, Canada
| | | | | | - Hugo Poulin
- CERVO Brain Research Centre, Quebec City, Quebec, Canada
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
4
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
5
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Li P, Kim JK. Circadian regulation of sinoatrial nodal cell pacemaking function: Dissecting the roles of autonomic control, body temperature, and local circadian rhythmicity. PLoS Comput Biol 2024; 20:e1011907. [PMID: 38408116 PMCID: PMC10927146 DOI: 10.1371/journal.pcbi.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Strong circadian (~24h) rhythms in heart rate (HR) are critical for flexible regulation of cardiac pacemaking function throughout the day. While this circadian flexibility in HR is sustained in diverse conditions, it declines with age, accompanied by reduced maximal HR performance. The intricate regulation of circadian HR involves the orchestration of the autonomic nervous system (ANS), circadian rhythms of body temperature (CRBT), and local circadian rhythmicity (LCR), which has not been fully understood. Here, we developed a mathematical model describing ANS, CRBT, and LCR in sinoatrial nodal cells (SANC) that accurately captures distinct circadian patterns in adult and aged mice. Our model underscores how the alliance among ANS, CRBT, and LCR achieves circadian flexibility to cover a wide range of firing rates in SANC, performance to achieve maximal firing rates, while preserving robustness to generate rhythmic firing patterns irrespective of external conditions. Specifically, while ANS dominates in promoting SANC flexibility and performance, CRBT and LCR act as primary and secondary boosters, respectively, to further enhance SANC flexibility and performance. Disruption of this alliance with age results in impaired SANC flexibility and performance, but not robustness. This unexpected outcome is primarily attributed to the age-related reduction in parasympathetic activities, which maintains SANC robustness while compromising flexibility. Our work sheds light on the critical alliance of ANS, CRBT, and LCR in regulating time-of-day cardiac pacemaking function and dysfunction, offering insights into novel therapeutic targets for the prevention and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Pan Li
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Salgado-Almario J, Molina Y, Vicente M, Martínez-Sielva A, Rodríguez-García R, Vincent P, Domingo B, Llopis J. ERG potassium channels and T-type calcium channels contribute to the pacemaker and atrioventricular conduction in zebrafish larvae. Acta Physiol (Oxf) 2024; 240:e14075. [PMID: 38071417 DOI: 10.1111/apha.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIM Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current IKr in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease. Here, we investigate the contribution of ERG channels and TTCCs to the pacemaker and atrioventricular conduction in zebrafish larvae and determine the mechanisms causing atrioventricular block. METHODS Zebrafish larvae expressing ratiometric fluorescent Ca2+ biosensors in the heart were used to measure Ca2+ levels and rhythm in beating hearts in vivo, concurrently with contraction and hemodynamics. The atrioventricular delay (the time between the start of atrial and ventricular Ca2+ transients) was used to measure impulse conduction velocity and distinguished between slow conduction and prolonged refractoriness as the cause of the conduction block. RESULTS ERG blockers caused bradycardia and atrioventricular block by prolonging the refractory period in the atrioventricular canal and in working ventricular myocytes. In contrast, inhibition of TTCCs caused bradycardia and second-degree block (Mobitz type I) by slowing atrioventricular conduction. TTCC block did not affect ventricular contractility, despite being highly expressed in cardiomyocytes. Concomitant measurement of Ca2+ levels and ventricular size showed mechano-mechanical coupling: increased preload resulted in a stronger heart contraction in vivo. CONCLUSION ERG channels and TTCCs influence the heart rate and atrioventricular conduction in zebrafish larvae. The zebrafish lines expressing Ca2+ biosensors in the heart allow us to investigate physiological feedback mechanisms and complex arrhythmias.
Collapse
Affiliation(s)
- Jussep Salgado-Almario
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Yillcer Molina
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Manuel Vicente
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Antonio Martínez-Sielva
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Raúl Rodríguez-García
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pierre Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Beatriz Domingo
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Llopis
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
8
|
Arbel Ganon L, Davoodi M, Alexandrovich A, Yaniv Y. Synergy between Membrane Currents Prevents Severe Bradycardia in Mouse Sinoatrial Node Tissue. Int J Mol Sci 2023; 24:ijms24065786. [PMID: 36982861 PMCID: PMC10051777 DOI: 10.3390/ijms24065786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Bradycardia is initiated by the sinoatrial node (SAN), which is regulated by a coupled-clock system. Due to the clock coupling, reduction in the 'funny' current (If), which affects SAN automaticity, can be compensated, thus preventing severe bradycardia. We hypothesize that this fail-safe system is an inherent feature of SAN pacemaker cells and is driven by synergy between If and other ion channels. This work aimed to characterize the connection between membrane currents and their underlying mechanisms in SAN cells. SAN tissues were isolated from C57BL mice and Ca2+ signaling was measured in pacemaker cells within them. A computational model of SAN cells was used to understand the interactions between cell components. Beat interval (BI) was prolonged by 54 ± 18% (N = 16) and 30 ± 9% (N = 21) in response to If blockade, by ivabradine, or sodium current (INa) blockade, by tetrodotoxin, respectively. Combined drug application had a synergistic effect, manifested by a BI prolonged by 143 ± 25% (N = 18). A prolongation in the local Ca2+ release period, which reports on the level of crosstalk within the coupled-clock system, was measured and correlated with the prolongation in BI. The computational model predicted that INa increases in response to If blockade and that this connection is mediated by changes in T and L-type Ca2+ channels.
Collapse
Affiliation(s)
- Limor Arbel Ganon
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Moran Davoodi
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Alexandra Alexandrovich
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| |
Collapse
|
9
|
Agrawal A, Wang K, Polonchuk L, Cooper J, Hendrix M, Gavaghan DJ, Mirams GR, Clerx M. Models of the cardiac L-type calcium current: A quantitative review. WIREs Mech Dis 2023; 15:e1581. [PMID: 36028219 PMCID: PMC10078428 DOI: 10.1002/wsbm.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
The L-type calcium current (I CaL ) plays a critical role in cardiac electrophysiology, and models ofI CaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modelingI CaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalianI CaL models and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modeling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model ofI CaL . This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Aditi Agrawal
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Ken Wang
- Pharma Research and Early Development, Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Liudmila Polonchuk
- Pharma Research and Early Development, Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Jonathan Cooper
- Centre for Advanced Research ComputingUniversity College LondonLondonUK
| | - Maurice Hendrix
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
- Digital Research Service, Information SciencesUniversity of NottinghamNottinghamUK
| | - David J. Gavaghan
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| | - Michael Clerx
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
10
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
11
|
Depressed HCN4 function in the type 2 diabetic sinoatrial node. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
13
|
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021; 10:3370. [PMID: 34943878 PMCID: PMC8699770 DOI: 10.3390/cells10123370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Michael Georg Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| | - Dietmar Zellner
- Non-Clinical Statistics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| |
Collapse
|
14
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
15
|
Li Y, Wang K, Li Q, Hancox JC, Zhang H. Reciprocal interaction between IK1 and If in biological pacemakers: A simulation study. PLoS Comput Biol 2021; 17:e1008177. [PMID: 33690622 PMCID: PMC7984617 DOI: 10.1371/journal.pcbi.1008177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Peng Cheng Laboratory, Shenzhen, China
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Weisbrod D. Small and Intermediate Calcium Activated Potassium Channels in the Heart: Role and Strategies in the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:590534. [PMID: 33329039 PMCID: PMC7719780 DOI: 10.3389/fphys.2020.590534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium-activated potassium channels are a heterogeneous family of channels that, despite their different biophysical characteristics, structures, and pharmacological signatures, play a role of transducer between the ubiquitous intracellular calcium signaling and the electric variations of the membrane. Although this family of channels was extensively described in various excitable and non-excitable tissues, an increasing amount of evidences shows their functional role in the heart. This review aims to focus on the physiological role and the contribution of the small and intermediate calcium-activated potassium channels in cardiac pathologies.
Collapse
|
17
|
Zhang JC, Xie XT, Chen Q, Zou T, Wu HL, Zhu C, Dong Y, Ye L, Li Y, Zhu PL. The effect of forskolin on membrane clock and calcium clock in the hypoxic/reoxygenation of sinoatrial node cells and its mechanism. Pharmacol Rep 2020; 72:1706-1716. [PMID: 32451735 DOI: 10.1007/s43440-020-00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND In this study, we investigated the effect of forskolin (FSK, a selective adenylate cyclase agonist) on the automatic diastolic depolarization of sinus node cells (SNC) with hypoxia/reoxygenation (H/R) injury. METHODS The SNC of the newborn rat was randomly assigned into the control group, the H/R (H/R injury) group, or the H/R + FSK (H/R injury + FSK treatment) group. Patch-clamp was performed to record the action potential and electrophysiological changes. The cellular distribution of intracellular calcium concentration was analyzed by fluorescence staining. RESULTS Compared with the control cells, spontaneous pulsation frequency (SPF) and diastolic depolarization rate (DDR) of H/R cells were reduced from 244.3 ± 10.6 times/min and 108.7 ± 7.8 mV/s to 130.5 ± 7.6 times/min and 53.4 ± 6.5 mV/s, respectively. FSK significantly increased SPF and DDR of H/R cells to 208.3 ± 8.3 times/min and 93.2 ± 8.9 mV/s (n = 15, both p < 0.01), respectively. H/R reduced the current densities of If, ICa,T and inward INCX, which were significantly increased by 10 μM FSK treatment (n = 15, p < 0.01). Furthermore, reduced expression of HCN4 and NCX1.1 channel protein were significantly increased by FSK. Inhibitor studies showed that both SQ22536 (a selective adenylate cyclase inhibitor) and H89 (a selective protein kinases A [PKA] inhibitor) blocked the effects of FSK on SPF and DDR. CONCLUSIONS H/R causes pacemaker dysfunction in newborn rat sinoatrial node cells leading to divergence of the DD and the slow of spontaneous APs, which change can be dramatically reversed by FSK through increasing INCX and If current in H/R injury.
Collapse
Affiliation(s)
- Jian-Cheng Zhang
- Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China.,Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China
| | - Xiao-Ting Xie
- Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China.,Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China
| | - Qian Chen
- Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China.,Department of Critical Care Medicine Division Four, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China
| | - Tian Zou
- Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China.,Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China
| | - Hong-Lin Wu
- Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China.,Department of Cardiology, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China
| | - Chao Zhu
- Department of Cardiology, General Hospital of People's Liberation Army, Haidian District, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Ying Dong
- Department of Cardiology, General Hospital of People's Liberation Army, Haidian District, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Lei Ye
- National Heart Research Institute, Singapore, Singapore
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation Army, Haidian District, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Peng-Li Zhu
- Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China. .,Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Provincial Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, Fujian, 350000, People's Republic of China.
| |
Collapse
|
18
|
Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications. Circ Res 2020; 126:395-412. [PMID: 31999537 PMCID: PMC7004450 DOI: 10.1161/circresaha.119.315891] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Normal cardiac function requires that intracellular Ca2+ concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca2+ concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca2+ concentration. It then considers how the control of systolic and diastolic intracellular Ca2+ concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - David C Hutchings
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| |
Collapse
|
19
|
Chen Q, Chen JQ, Zhu PL, Wu HL, Xie XT, Dong Y, Xiang GJ, Chen MY, Li Y, Zhang JC. Inhibitory Effects of Cyclopiazonic Acid on the Pacemaker Current in Sinoatrial Nodal Cells. Neuroscience 2020; 433:230-240. [PMID: 31982470 DOI: 10.1016/j.neuroscience.2020.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The spontaneous action potential of isolated sinoatrial node (SAN) cells is regulated by a coupled-clock system of two clocks: the calcium clock and membrane clock. However, it remains unclear whether calcium clock inhibitors have a direct effect on the membrane clock. The purpose of this study was to investigate the direct effect of cyclopiazonic acid (CPA), a selective calcium clock inhibitor, on the function of the membrane clock of SAN cells. METHODS at SAN cells were isolated by trypsinization and identified based on morphology and electrophysiology. If and HCN currents were recorded via patch clamp technique. The expression of the HCN channel protein was determined by Western blotting analysis. RESULTS The diastolic depolarization rate of spontaneous action potentials and the current densities of If were reduced by exposure to 10 μM CPA. The inhibitory effect of CPA was concentration-dependent with an IC50 value of 16.3 μM and a Hill coefficient of 0.98. The effect of CPA on If current was also time-dependent, and the If current amplitude was partially restored after washout. Furthermore, the steady-state activation curve of the If current was shifted to a negative potential, indicating that channel activation slowed down. Finally, the protein expression of HCN4 in HEK293 cells was markedly downregulated by CPA. CONCLUSIONS These results indicate that the direct inhibition effect of CPA on the If current in SAN cells is both concentration- and time-dependent. The underlying mechanisms may involve slowing down steady-state activation and the downregulation of pacemaker channel protein expression.
Collapse
Affiliation(s)
- Qian Chen
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Critical Care Medicine Division Four, Fujian Provincial Hospital, No.134 East Street, Gulou Distric, Fuzhou, Fujian 350000, PR China.
| | - Jian-Quan Chen
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Cardiology, Fujian Provincial Hospital, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China.
| | - Peng-Li Zhu
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China.
| | - Hong-Lin Wu
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Cardiology, Fujian Provincial Hospital, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China.
| | - Xiao-Ting Xie
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Cardiology, Fujian Provincial Hospital, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China.
| | - Ying Dong
- Department of Cardiology, General Hospital of People's Liberation Army, No.28 Fuxing Road, Haidian District, Beijing 100853, PR China.
| | - Guo-Jian Xiang
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Critical Care Medicine Division Four, Fujian Provincial Hospital, No.134 East Street, Gulou Distric, Fuzhou, Fujian 350000, PR China.
| | - Mei-Yan Chen
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Anesthesiology Division Two, Fujian Provincial Hospital, No.134 East Street, Gulou Distric, Fuzhou, Fujian 350000, PR China.
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation Army, No.28 Fuxing Road, Haidian District, Beijing 100853, PR China.
| | - Jian-Cheng Zhang
- Provincial Clinical Medicine College of Fujian Medical University, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China; Department of Cardiology, Fujian Provincial Hospital, No.134 East Street, Gulou District, Fuzhou, Fujian 350000, PR China.
| |
Collapse
|
20
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
21
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
22
|
Liu Y, Wang P, Ma F, Zheng M, Liu G, Kume S, Kurokawa T, Ono K. Asparagine-linked glycosylation modifies voltage-dependent gating properties of Ca V3.1-T-type Ca 2+ channel. J Physiol Sci 2019; 69:335-343. [PMID: 30600443 PMCID: PMC10717069 DOI: 10.1007/s12576-018-0650-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023]
Abstract
T-type channels are low-voltage-activated channels that play a role in the cardiovascular system particularly for pacemaker activity. Glycosylation is one of the most prevalent post-translational modifications in protein. Among various glycosylation types, the most common one is asparagine-linked (N-linked) glycosylation. The aim of this study was to elucidate the roles of N-linked glycosylation for the gating properties of the CaV3.1-T-type Ca2+ channel. N-linked glycosylation synthesis inhibitor tunicamycin causes a reduction of CaV3.1-T-type Ca2+ channel current (CaV3.1-ICa.T) when applied for 12 h or longer. Tunicamycin (24 h) significantly shifted the activation curve to the depolarization potentials, whereas the steady-state inactivation curve was unaffected. Use-dependent inactivation of CaV3.1-ICa.T was accelerated, and recovery from inactivation was prolonged by tunicamycin (24 h). CaV3.1-ICa.T was insensitive to a glycosidase PNGase F when the channels were expressed on the plasma membrane. These findings suggest that N-glycosylation contributes not only to the cell surface expression of the CaV3.1-T-type Ca2+ channel but to the regulation of the gating properties of the channel when the channel proteins were processed during the folding and trafficking steps in the cell.
Collapse
Affiliation(s)
- Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
23
|
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:69-90. [DOI: 10.1016/j.pbiomolbio.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
|
24
|
Chen K, Zuo D, Wang SY, Chen H. Kir2 inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate pacemaking activity. FASEB J 2018; 32:3047-3057. [PMID: 29401592 DOI: 10.1096/fj.201701260r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spontaneous rhythmic action potential or pacemaking activity of pacemaker cells controls rhythmic signaling such as heartbeat. The mechanism underlying the origin of pacemaking activity is not well understood. In this study, we created human embryonic kidney (HEK) 293 cells that show pacemaking activity through heterologous expression of strong inward rectifier K+ subfamily 2 isoform 1 (Kir2.1) channels, hyperpolarization-activated cyclic nucleotide-gated isoform 2 (HCN2) nonselective cation channels, and voltage-gated Na+ subfamily 1 isoform 5 or Ca2+ subfamily 3 isoform 1 (Nav1.5 or Cav3.1) channels. A range of relative levels of Kir2.1 and HCN2 currents dynamically counterbalance, generating spontaneous rhythmic oscillation of resting membrane potential between -64 and -34 mV and determining oscillation rates. Each oscillation cycle begins with an autodepolarization phase, which slowly proceeds to the threshold potential that activates Nav1.5 or Cav3.1 channels and triggers action potential, causing engineered HEK293 cells to exhibit pacemaking activity at a rate of ≤67 beats/min. Engineered HEK293 cells with Kir2.1 and either HCN3 or HCN4 also show the oscillation. Engineered HEK293 cells expressing HCN2 and other Kir2 channels, which lack Kir2.1-like complete inward rectification, do not show the oscillation. Therefore, Kir2.1-like inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate spontaneous rhythmic action potential and form an origin of pacemaking activity; Kir2 and HCN channels play essential roles in pacemaking activity.-Chen, K., Zuo, D., Wang, S.-Y. Chen, H. Kir2 inward rectification-controlled precise and dynamic balances between Kir2 and HCN currents initiate pacemaking activity.
Collapse
Affiliation(s)
- Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Dongchuan Zuo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Sho-Ya Wang
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
25
|
Nishizawa Y, Takahashi K, Oguma N, Tominaga M, Ohta T. Possible involvement of transient receptor potential ankyrin 1 in Ca2+
signaling via T-type Ca2+
channel in mouse sensory neurons. J Neurosci Res 2017; 96:901-910. [DOI: 10.1002/jnr.24208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Yuki Nishizawa
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Naoko Oguma
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Makoto Tominaga
- Division of Cell Signaling; Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences; Okazaki Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| |
Collapse
|
26
|
Chemin J, Taiakina V, Monteil A, Piazza M, Guan W, Stephens RF, Kitmitto A, Pang ZP, Dolphin AC, Perez-Reyes E, Dieckmann T, Guillemette JG, Spafford JD. Calmodulin regulates Ca v3 T-type channels at their gating brake. J Biol Chem 2017; 292:20010-20031. [PMID: 28972185 PMCID: PMC5723990 DOI: 10.1074/jbc.m117.807925] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I-II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I-II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM.
Collapse
Affiliation(s)
- Jean Chemin
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier F-34094, France
| | | | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier F-34094, France
| | - Michael Piazza
- Departments of Chemistry, Waterloo, Ontario N2L 3G1, Canada
| | - Wendy Guan
- Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | | | | | - J David Spafford
- Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
27
|
Maruyoshi H, Maruyoshi N, Hirosue M, Ikeda K, Shimamoto M. Clonazepam-associated Bradycardia in a Disabled Elderly Woman with Multiple Complications. Intern Med 2017; 56:2301-2305. [PMID: 28794360 PMCID: PMC5635303 DOI: 10.2169/internalmedicine.8234-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We herein report an 87-year-old woman who was taking clonazepam at 1.5 mg/day. She was hospitalized with an old cerebral infarction complicated with symptomatic epilepsy, dementia, dyslipidemia, and chronic cholecystitis. Electrocardiogram revealed severe bradycardia at 31 beats/min. The bradycardia disappeared on day 3 after clonazepam withdrawal, although the serum clonazepam level had been within normal limits. She was diagnosed with clonazepam-associated bradycardia, which was likely related to the potential calcium channel-blocking properties of clonazepam. Because of age-related pharmacokinetic and pharmacodynamic changes, the adverse effects of clonazepam should be considered, especially in disabled elderly individuals with multiple comorbidities.
Collapse
Affiliation(s)
| | | | - Motone Hirosue
- Department of Internal Medicine, Shimamoto Hospital, Japan
| | - Komei Ikeda
- Department of Neurological Surgery, Shimamoto Hospital, Japan
| | | |
Collapse
|
28
|
Uzun AU, Mannhardt I, Breckwoldt K, Horváth A, Johannsen SS, Hansen A, Eschenhagen T, Christ T. Ca(2+)-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions. Front Pharmacol 2016; 7:300. [PMID: 27672365 PMCID: PMC5018497 DOI: 10.3389/fphar.2016.00300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca2+-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p < 0.05, n = 196) for atrial CM and 6 ± 1 pA/pF (p < 0.05, n = 47) for ventricular CM]. However, ML and EHT showed robust T-type Ca2+-currents (ICa,T). While (−)-Bay K 8644, that activates ICa,L directly, increased ICa,Lto the same extent in ML and EHT, β1- and β2-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β1 and β2-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC50: 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC50: 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express ICa,L at the same density as human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation.
Collapse
Affiliation(s)
- Ahmet U Uzun
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Silke S Johannsen
- Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany; Department of General and Interventional Cardiology, University Heart Center HamburgHamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| |
Collapse
|
29
|
Marks WN, Greba Q, Cain SM, Snutch TP, Howland JG. The T-type calcium channel antagonist Z944 disrupts prepulse inhibition in both epileptic and non-epileptic rats. Neuroscience 2016; 332:121-9. [DOI: 10.1016/j.neuroscience.2016.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
|
30
|
Choy L, Yeo JM, Tse V, Chan SP, Tse G. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. IJC HEART & VASCULATURE 2016; 12:1-10. [PMID: 27766308 PMCID: PMC5064289 DOI: 10.1016/j.ijcha.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.
Collapse
Affiliation(s)
- Lois Choy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Vivian Tse
- Department of Physiology, McGill University, Canada
| | - Shing Po Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
31
|
Hurtado R, Smith CS. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues. J Anat 2016; 228:812-25. [PMID: 26805464 DOI: 10.1111/joa.12444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Renal pacemaker activity triggers peristaltic upper urinary tract contractions that propel waste from the kidney to the bladder, a process prone to congenital defects that are the leading cause of pediatric kidney failure. Recently, studies have discovered that hyperpolarization-activated cation (HCN) and T-type calcium (TTC) channel conductances underlie murine renal pacemaker activity, setting the origin and frequency and coordinating upper urinary tract peristalsis. Here, we determined whether this ion channel expression is conserved in the porcine and human urinary tracts, which share a distinct multicalyceal anatomy with multiple pacemaker sites. Double chromagenic immunohistochemistry revealed that HCN isoform 3 is highly expressed at the porcine minor calyces, the renal pacemaker tissues, whereas the kidney and urinary tract smooth muscle lacked this HCN expression. Immunofluorescent staining demonstrated that HCN(+) cells are integrated within the porcine calyx smooth muscle, and that they co-express TTC channel isoform Cav3.2. In humans, the anatomic structure of the minor calyx pacemaker was assayed via hematoxylin and eosin analyses, and enabled the visualization of the calyx smooth muscle surrounding adjacent papillae. Strikingly, immunofluorescence revealed that HCN3(+) /Cav3.2(+) cells are also localized to the human minor calyx smooth muscle. Collectively, these data have elucidated a conserved molecular signature of HCN and TTC channel expression in porcine and human calyx pacemaker tissues. These findings provide evidence for the mechanisms that can drive renal pacemaker activity in the multi-calyceal urinary tract, and potential causes of obstructive uropathies.
Collapse
Affiliation(s)
- Romulo Hurtado
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA.,The Core for Smooth Muscle Analysis, Weill Medical College of Cornell University, New York, NY, USA
| | - Carl S Smith
- Department of Urologic Surgery, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
32
|
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW, Hove-Madsen L, Tibbits GF. The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol 2016; 171:99-136. [PMID: 27538987 DOI: 10.1007/112_2016_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.
Collapse
Affiliation(s)
- Christine E Genge
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Ling Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - XiaoYe Sheng
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Charles M Stevens
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Sanam Shafaat Talab
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Thomas W Claydon
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Leif Hove-Madsen
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
33
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 786] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
35
|
Schüler C, Fischer E, Shaltiel L, Steuer Costa W, Gottschalk A. Arrhythmogenic effects of mutated L-type Ca 2+-channels on an optogenetically paced muscular pump in Caenorhabditis elegans. Sci Rep 2015; 5:14427. [PMID: 26399900 PMCID: PMC4585839 DOI: 10.1038/srep14427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/28/2015] [Indexed: 01/23/2023] Open
Abstract
Cardiac arrhythmias are often associated with mutations in ion channels or other proteins. To enable drug development for distinct arrhythmias, model systems are required that allow implementing patient-specific mutations. We assessed a muscular pump in Caenorhabditis elegans. The pharynx utilizes homologues of most of the ion channels, pumps and transporters defining human cardiac physiology. To yield precise rhythmicity, we optically paced the pharynx using channelrhodopsin-2. We assessed pharynx pumping by extracellular recordings (electropharyngeograms—EPGs), and by a novel video-microscopy based method we developed, which allows analyzing multiple animals simultaneously. Mutations in the L-type VGCC (voltage-gated Ca2+-channel) EGL-19 caused prolonged pump duration, as found for analogous mutations in the Cav1.2 channel, associated with long QT syndrome. egl-19 mutations affected ability to pump at high frequency and induced arrhythmicity. The pharyngeal neurons did not influence these effects. We tested whether drugs could ameliorate arrhythmia in the optogenetically paced pharynx. The dihydropyridine analog Nemadipine A prolonged pump duration in wild type, and reduced or prolonged pump duration of distinct egl-19 alleles, thus indicating allele-specific effects. In sum, our model may allow screening of drug candidates affecting specific VGCCs mutations, and permit to better understand the effects of distinct mutations on a macroscopic level.
Collapse
Affiliation(s)
- Christina Schüler
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt-Macromolecular Complexes, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany
| | - Elisabeth Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt-Macromolecular Complexes, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany
| | - Lior Shaltiel
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany.,Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, D-60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt-Macromolecular Complexes, Goethe University, Max von Laue Strasse 15, D-60438 Frankfurt, Germany
| |
Collapse
|
36
|
Curran J, Musa H, Kline CF, Makara MA, Little SC, Higgins JD, Hund TJ, Band H, Mohler PJ. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria. J Biol Chem 2015; 290:12210-21. [PMID: 25825486 DOI: 10.1074/jbc.m115.646893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca(2+) channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca(2+) current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca(2+) channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.
Collapse
Affiliation(s)
- Jerry Curran
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology,
| | - Hassan Musa
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Crystal F Kline
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Michael A Makara
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Sean C Little
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - John D Higgins
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Thomas J Hund
- From the Dorothy M. Davis Heart and Lung Research Institute, Biomedical Engineering,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210 and
| | - Hamid Band
- The Eppley Institute and UNMC-Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Peter J Mohler
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology, Medicine, and
| |
Collapse
|
37
|
Capel RA, Terrar DA. The importance of Ca(2+)-dependent mechanisms for the initiation of the heartbeat. Front Physiol 2015; 6:80. [PMID: 25859219 PMCID: PMC4373508 DOI: 10.3389/fphys.2015.00080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/02/2015] [Indexed: 01/01/2023] Open
Abstract
Mechanisms underlying pacemaker activity in the sinus node remain controversial, with some ascribing a dominant role to timing events in the surface membrane (“membrane clock”) and others to uptake and release of calcium from the sarcoplasmic reticulum (SR) (“calcium clock”). Here we discuss recent evidence on mechanisms underlying pacemaker activity with a particular emphasis on the many roles of calcium. There are particular areas of controversy concerning the contribution of calcium spark-like events and the importance of I(f) to spontaneous diastolic depolarisation, though it will be suggested that neither of these is essential for pacemaking. Sodium-calcium exchange (NCX) is most often considered in the context of mediating membrane depolarisation after spark-like events. We present evidence for a broader role of this electrogenic exchanger which need not always depend upon these spark-like events. Short (milliseconds or seconds) and long (minutes) term influences of calcium are discussed including direct regulation of ion channels and NCX, and control of the activity of calcium-dependent enzymes (including CaMKII, AC1, and AC8). The balance between the many contributory factors to pacemaker activity may well alter with experimental and clinical conditions, and potentially redundant mechanisms are desirable to ensure the regular spontaneous heart rate that is essential for life. This review presents evidence that calcium is central to the normal control of pacemaking across a range of temporal scales and seeks to broaden the accepted description of the “calcium clock” to cover these important influences.
Collapse
Affiliation(s)
- Rebecca A Capel
- British Heart Foundation Centre of Research Excellence, Department of Pharmacology, University of Oxford Oxford, UK
| | - Derek A Terrar
- British Heart Foundation Centre of Research Excellence, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
38
|
Yaniv Y, Lakatta EG, Maltsev VA. From two competing oscillators to one coupled-clock pacemaker cell system. Front Physiol 2015; 6:28. [PMID: 25741284 PMCID: PMC4327306 DOI: 10.3389/fphys.2015.00028] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/17/2015] [Indexed: 01/01/2023] Open
Abstract
At the beginning of this century, debates regarding “what are the main control mechanisms that ignite the action potential (AP) in heart pacemaker cells” dominated the electrophysiology field. The original theory which prevailed for over 50 years had advocated that the ensemble of surface membrane ion channels (i.e., “M-clock”) is sufficient to ignite rhythmic APs. However, more recent experimental evidence in a variety of mammals has shown that the sarcoplasmic reticulum (SR) acts as a “Ca2+-clock” rhythmically discharges diastolic local Ca2+ releases (LCRs) beneath the cell surface membrane. LCRs activate an inward current (likely that of the Na+/Ca2+ exchanger) that prompts the surface membrane “M-clock” to ignite an AP. Theoretical and experimental evidence has mounted to indicate that this clock “crosstalk” operates on a beat-to-beat basis and determines both the AP firing rate and rhythm. Our review is focused on the evolution of experimental definition and numerical modeling of the coupled-clock concept, on how mechanisms intrinsic to pacemaker cell determine both the heart rate and rhythm, and on future directions to develop further the coupled-clock pacemaker cell concept.
Collapse
Affiliation(s)
- Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
39
|
Kuwahara K, Kimura T. The organ-protective effect of N-type Ca(2+) channel blockade. Pharmacol Ther 2015; 151:1-7. [PMID: 25659931 DOI: 10.1016/j.pharmthera.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023]
Abstract
The six subtypes of voltage-dependent Ca(2+) channels (VDCCs) mediate a wide range of physiological responses. N-type VDCCs (NCCs) were originally identified as a high voltage-activated Ca(2+) channel selectively blocked by omega-conotoxin (ω-CTX)-GVIA. Predominantly localized in the nervous system, NCCs are key regulators of neurotransmitter release. Both pharmacological blockade with ω-CTX-GVIA and, more recently, mice lacking CNCNA1B, encoding the α1B subunit of NCC, have been used to assess the physiological and pathophysiological functions of NCCs, revealing in part their significant roles in sympathetic nerve activation and nociceptive transmission. The evidence now available indicates that NCCs are a potentially useful therapeutic target for the treatment of several pathological conditions. Efforts are therefore being made to develop effective NCC blockers, including both synthetic ω-CTX-GVIA derivatives and small-molecule inhibitors. Cilnidipine, for example, is a dihydropyridine L-type VDCC blocking agent that also possesses significant NCC blocking ability. As over-activation of the sympathetic nervous system appears to contribute to the pathological processes underlying cardiovascular, renal and metabolic diseases, NCC blockade could be a useful approach to treating these ailments. In this review article, we provide an overview of what is currently known about the physiological and pathophysiological activities of NCCs and the potentially beneficial effects of NCC blockade in several disease conditions, in particular cardiovascular diseases.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
40
|
Tong WC, Ghouri I, Taggart MJ. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials. Front Physiol 2014; 5:399. [PMID: 25360118 PMCID: PMC4199256 DOI: 10.3389/fphys.2014.00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.
Collapse
Affiliation(s)
- Wing-Chiu Tong
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | | | - Michael J. Taggart
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
41
|
|