1
|
El-Medany A, Adams ZH, Blythe HC, Hope KA, Kendrick AH, Abdala Sheikh AP, Paton JFR, Nightingale AK, Hart EC. Carotid body dysregulation contributes to Long COVID symptoms. COMMUNICATIONS MEDICINE 2024; 4:20. [PMID: 38374172 PMCID: PMC10876702 DOI: 10.1038/s43856-024-00447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID. METHODS Non-hositalised participants with long-COVID (n = 14) and controls (n = 14) completed hypoxic ventilatory response (HVR; the measure of carotid chemoreflex sensitivity) and cardiopulmonary exercise tests. Parametric and normally distributed data were compared using Student's unpaired t-tests or ANOVA. Nonparametric equivalents were used where relevant. Peason's correlation coefficient was used to examine relationships between variables. RESULTS During cardiopulmonary exercise testing the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group (37.8 ± 4.4) compared to controls (27.7 ± 4.8, P = 0.0003), indicating excessive hyperventilation. The HVR was increased in long COVID participants (-0.44 ± 0.23 l/min/ SpO2%, R2 = 0.77 ± 0.20) compared to controls (-0.17 ± 0.13 l/min/SpO2%, R2 = 0.54 ± 0.38, P = 0.0007). The HVR correlated with the VE/VCO2 slope (r = -0.53, P = 0.0036), suggesting that excessive hyperventilation may be related to carotid body hypersensitivity. CONCLUSIONS The carotid chemoreflex is sensitised in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.
Collapse
Affiliation(s)
- Ahmed El-Medany
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Cardiology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Zoe H Adams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hazel C Blythe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Katrina A Hope
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Anaesthetics, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Adrian H Kendrick
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Respiratory Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Julian F R Paton
- Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Angus K Nightingale
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
LKB1 is the gatekeeper of carotid body chemosensing and the hypoxic ventilatory response. Commun Biol 2022; 5:642. [PMID: 35768580 PMCID: PMC9243028 DOI: 10.1038/s42003-022-03583-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
The hypoxic ventilatory response (HVR) is critical to breathing and thus oxygen supply to the body and is primarily mediated by the carotid bodies. Here we reveal that carotid body afferent discharge during hypoxia and hypercapnia is determined by the expression of Liver Kinase B1 (LKB1), the principal kinase that activates the AMP-activated protein kinase (AMPK) during metabolic stresses. Conversely, conditional deletion in catecholaminergic cells of AMPK had no effect on carotid body responses to hypoxia or hypercapnia. By contrast, the HVR was attenuated by LKB1 and AMPK deletion. However, in LKB1 knockouts hypoxia evoked hypoventilation, apnoea and Cheyne-Stokes-like breathing, while only hypoventilation and apnoea were observed after AMPK deletion. We therefore identify LKB1 as an essential regulator of carotid body chemosensing and uncover a divergence in dependency on LKB1 and AMPK between the carotid body on one hand and the HVR on the other.
Collapse
|
3
|
Hawrysh PJ, Myrka AM, Buck LT. Review: A history and perspective of mitochondria in the context of anoxia tolerance. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110733. [PMID: 35288242 DOI: 10.1016/j.cbpb.2022.110733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Symbiosis is found throughout nature, but perhaps nowhere is it more fundamental than mitochondria in all eukaryotes. Since mitochondria were discovered and mechanisms of oxygen reduction characterized, an understanding gradually emerged that these organelles were involved not just in the combustion of oxygen, but also in the sensing of oxygen. While multiple hypotheses exist to explain the mitochondrial involvement in oxygen sensing, key elements are developing that include potassium channels and reactive oxygen species. To understand how mitochondria contribute to oxygen sensing, it is informative to study a model system which is naturally adapted to survive extended periods without oxygen. Amongst air-breathing vertebrates, the most highly adapted are western painted turtles (Chrysemys picta bellii), which overwinter in ice-covered and anoxic water bodies. Through research of this animal, it was postulated that metabolic rate depression is key to anoxic survival and that mitochondrial regulation is a key aspect. When faced with anoxia, excitatory neurotransmitter receptors in turtle brain are inhibited through mitochondrial calcium release, termed "channel arrest". Simultaneously, inhibitory GABAergic signalling contributes to the "synaptic arrest" of excitatory action potential firing through a pathway dependent on mitochondrial depression of ROS generation. While many pathways are implicated in mitochondrial oxygen sensing in turtles, such as those of adenosine, ATP turnover, and gaseous transmitters, an apparent point of intersection is the mitochondria. In this review we will explore how an organelle that was critical for organismal complexity in an oxygenated world has also become a potentially important oxygen sensor.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Alexander Morley Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
4
|
Holmes AP, Swiderska A, Nathanael D, Aldossary HS, Ray CJ, Coney AM, Kumar P. Are Multiple Mitochondrial Related Signalling Pathways Involved in Carotid Body Oxygen Sensing? Front Physiol 2022; 13:908617. [PMID: 35711317 PMCID: PMC9194093 DOI: 10.3389/fphys.2022.908617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
It is generally acknowledged that the carotid body (CB) type I cell mitochondria are unique, being inhibited by relatively small falls in PaO2 well above those known to inhibit electron transport in other cell types. This feature is suggested to allow for the CB to function as an acute O2 sensor, being stimulated and activating systemic protective reflexes before the metabolism of other cells becomes compromised. What is less clear is precisely how a fall in mitochondrial activity links to type I cell depolarisation, a process that is required for initiation of the chemotransduction cascade and post-synaptic action potential generation. Multiple mitochondrial/metabolic signalling mechanisms have been proposed including local generation of mitochondrial reactive oxygen species (mitoROS), a change in mitochondrial/cellular redox status, a fall in MgATP and an increase in lactate. Although each mechanism is based on compelling experimental evidence, they are all not without question. The current review aims to explore the importance of each of these signalling pathways in mediating the overall CB response to hypoxia. We suggest that there is unlikely to be a single mechanism, but instead multiple mitochondrial related signalling pathways are recruited at different PaO2s during hypoxia. Furthermore, it still remains to be determined if mitochondrial signalling acts independently or in partnership with extra-mitochondrial O2-sensors.
Collapse
Affiliation(s)
- Andrew P. Holmes
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Agnieszka Swiderska
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Demitris Nathanael
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hayyaf S. Aldossary
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Clare J. Ray
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew M. Coney
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Prem Kumar
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Mitochondrial Succinate Metabolism and Reactive Oxygen Species Are Important but Not Essential for Eliciting Carotid Body and Ventilatory Responses to Hypoxia in the Rat. Antioxidants (Basel) 2021; 10:antiox10060840. [PMID: 34070267 PMCID: PMC8225218 DOI: 10.3390/antiox10060840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/31/2023] Open
Abstract
Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)—A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10–30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20–50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular–respiratory disorders.
Collapse
|
6
|
Alzahrani AA, Cao LL, Aldossary HS, Nathanael D, Fu J, Ray CJ, Brain KL, Kumar P, Coney AM, Holmes AP. β-Adrenoceptor blockade prevents carotid body hyperactivity and elevated vascular sympathetic nerve density induced by chronic intermittent hypoxia. Pflugers Arch 2021; 473:37-51. [PMID: 33210151 PMCID: PMC7782391 DOI: 10.1007/s00424-020-02492-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both β1 and β2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for β-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.
Collapse
Affiliation(s)
- Abdulaziz A Alzahrani
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Respiratory Care Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lily L Cao
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hayyaf S Aldossary
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Demitris Nathanael
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jiarong Fu
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare J Ray
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Keith L Brain
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Prem Kumar
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew M Coney
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Andrew P Holmes
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Aldossary HS, Alzahrani AA, Nathanael D, Alhuthail EA, Ray CJ, Batis N, Kumar P, Coney AM, Holmes AP. G-Protein-Coupled Receptor (GPCR) Signaling in the Carotid Body: Roles in Hypoxia and Cardiovascular and Respiratory Disease. Int J Mol Sci 2020; 21:ijms21176012. [PMID: 32825527 PMCID: PMC7503665 DOI: 10.3390/ijms21176012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is an important organ located at the carotid bifurcation that constantly monitors the blood supplying the brain. During hypoxia, the CB immediately triggers an alarm in the form of nerve impulses sent to the brain. This activates protective reflexes including hyperventilation, tachycardia and vasoconstriction, to ensure blood and oxygen delivery to the brain and vital organs. However, in certain conditions, including obstructive sleep apnea, heart failure and essential/spontaneous hypertension, the CB becomes hyperactive, promoting neurogenic hypertension and arrhythmia. G-protein-coupled receptors (GPCRs) are very highly expressed in the CB and have key roles in mediating baseline CB activity and hypoxic sensitivity. Here, we provide a brief overview of the numerous GPCRs that are expressed in the CB, their mechanism of action and downstream effects. Furthermore, we will address how these GPCRs and signaling pathways may contribute to CB hyperactivity and cardiovascular and respiratory disease. GPCRs are a major target for drug discovery development. This information highlights specific GPCRs that could be targeted by novel or existing drugs to enable more personalized treatment of CB-mediated cardiovascular and respiratory disease.
Collapse
Affiliation(s)
- Hayyaf S. Aldossary
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abdulaziz A. Alzahrani
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Respiratory Care Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Demitris Nathanael
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Eyas A. Alhuthail
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Collage of Sciences and Health Professions, Basic Sciences Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Clare J. Ray
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Nikolaos Batis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Prem Kumar
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Andrew M. Coney
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Andrew P. Holmes
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-415-8161
| |
Collapse
|
8
|
Bernardini A, Wolf A, Brockmeier U, Riffkin H, Metzen E, Acker-Palmer A, Fandrey J, Acker H. Carotid body type I cells engage flavoprotein and Pin1 for oxygen sensing. Am J Physiol Cell Physiol 2020; 318:C719-C731. [PMID: 31967857 DOI: 10.1152/ajpcell.00320.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carotid body (CB) type I cells sense the blood Po2 and generate a nervous signal for stimulating ventilation and circulation when blood oxygen levels decline. Three oxygen-sensing enzyme complexes may be used for this purpose: 1) mitochondrial electron transport chain metabolism, 2) heme oxygenase 2 (HO-2)-generating CO, and/or 3) an NAD(P)H oxidase (NOX). We hypothesize that intracellular redox changes are the link between the sensor and nervous signals. To test this hypothesis type I cell autofluorescence of flavoproteins (Fp) and NAD(P)H within the mouse CB ex vivo was recorded as Fp/(Fp+NAD(P)H) redox ratio. CB type I cell redox ratio transiently declined with the onset of hypoxia. Upon reoxygenation, CB type I cells showed a significantly increased redox ratio. As a control organ, the non-oxygen-sensing sympathetic superior cervical ganglion (SCG) showed a continuously reduced redox ratio upon hypoxia. CN-, diphenyleneiodonium, or reactive oxygen species influenced chemoreceptor discharge (CND) with subsequent loss of O2 sensitivity and inhibited hypoxic Fp reduction only in the CB but not in SCG Fp, indicating a specific role of Fp in the oxygen-sensing process. Hypoxia-induced changes in CB type I cell redox ratio affected peptidyl prolyl isomerase Pin1, which is believed to colocalize with the NADPH oxidase subunit p47phox in the cell membrane to trigger the opening of potassium channels. We postulate that hypoxia-induced changes in the Fp-mediated redox ratio of the CB regulate the Pin1/p47phox tandem to alter type I cell potassium channels and therewith CND.
Collapse
Affiliation(s)
- André Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Wolf
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Brockmeier
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Helena Riffkin
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Eric Metzen
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Helmut Acker
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Mosqueira M, Iturriaga R. Chronic hypoxia changes gene expression profile of primary rat carotid body cells: consequences on the expression of NOS isoforms and ET-1 receptors. Physiol Genomics 2019; 51:109-124. [DOI: 10.1152/physiolgenomics.00114.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sustained chronic hypoxia (CH) produces morphological and functional changes in the carotid body (CB). Nitric oxide (NO) and endothelin-1 (ET-1) play a major role as modulators of the CB oxygen chemosensory process. To characterize the effects of CH related to normoxia (Nx) on gene expression, particularly on ET-1 and NO pathways, primary cultures of rat CB cells were exposed to 7 days of CH. Total RNA was extracted, and cDNA-32P was synthesized and hybridized with 1,185 genes printed on a nylon membrane Atlas cDNA Expression Array. Out of 324 differentially expressed genes, 184 genes were upregulated, while 140 genes were downregulated. The cluster annotation and protein network analyses showed that both NO and ET-1 signaling pathways were significantly enriched and key elements of each pathway were differentially expressed. Thus, we assessed the effect of CH at the protein level of nitric oxide synthase (NOS) isoforms and ET-1 receptors. CH induced an increase in the expression of endothelial NOS, inducible NOS, and ETB. During CH, the administration of SNAP, a NO donor, upregulated ETB. Treatment with Tezosentan (ET-1 receptor blocker) during CH upregulated all three NOS isoforms, while the NOS blocker L-NAME induced upregulation of iNOS and ETB and downregulated the protein levels of ETA. These results show that CH for 7 days changed the cultured cell CB gene expression profile, the NO and ET-1 signaling pathways were highly enriched, and these two signaling pathways interfered with the protein expression of each other.
Collapse
Affiliation(s)
- Matías Mosqueira
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago Chile
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago Chile
| |
Collapse
|
10
|
Rakoczy RJ, Wyatt CN. Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms. J Physiol 2018; 596:2969-2976. [PMID: 29214644 PMCID: PMC6068253 DOI: 10.1113/jp274351] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
The molecular underpinnings of the oxygen sensitivity of the carotid body Type I cells are becoming better defined as research begins to identify potential interactions between previously separate theories. Nevertheless, the field of oxygen chemoreception still presents the general observer with a bewildering array of potential signalling pathways by which a fall in oxygen levels might initiate Type I cell activation. The purpose of this brief review is to address five of the current oxygen sensing hypotheses: the lactate-Olfr 78 hypothesis of oxygen chemotransduction; the role mitochondrial ATP and metabolism may have in chemotransduction; the AMP-activated protein kinase hypothesis and its current role in oxygen sensing by the carotid body; reactive oxygen species as key transducers in the oxygen sensing cascade; and the mechanisms by which H2 S, reactive oxygen species and haem oxygenase may integrate to provide a rapid oxygen sensing transduction system. Over the previous 15 years several lines of research into acute hypoxic chemotransduction mechanisms have focused on the integration of mitochondrial and membrane signalling. This review places an emphasis on the subplasmalemmal-mitochondrial microenvironment in Type I cells and how theories of acute oxygen sensing are increasingly dependent on functional interaction within this microenvironment.
Collapse
Affiliation(s)
- Ryan J. Rakoczy
- Department of Neuroscience, Cell Biology, and PhysiologyWright State University3640 Colonel Glenn HwyDaytonOH45435USA
| | - Christopher N. Wyatt
- Department of Neuroscience, Cell Biology, and PhysiologyWright State University3640 Colonel Glenn HwyDaytonOH45435USA
| |
Collapse
|
11
|
Holmes AP, Ray CJ, Pearson SA, Coney AM, Kumar P. Ecto-5'-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia. J Physiol 2018; 596:3137-3148. [PMID: 28560821 PMCID: PMC6068227 DOI: 10.1113/jp274498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Carotid body dysfunction is recognized as a cause of hypertension in a number of cardiorespiratory diseases states and has therefore been identified as a potential therapeutic target. Purinergic transmission is an important element of the carotid body chemotransduction pathway. We show that inhibition of ecto-5'-nucleotidase (CD73) in vitro reduces carotid body basal discharge and responses to hypoxia and mitochondrial inhibition. Additionally, inhibition of CD73 in vivo decreased the hypoxic ventilatory response, reduced the hypoxia-induced heart rate elevation and exaggerated the blood pressure decrease in response to hypoxia. Our data show CD73 to be a novel regulator of carotid body sensory function and therefore suggest that this enzyme may offer a new target for reducing carotid body activity in selected cardiovascular diseases. ABSTRACT Augmented sensory neuronal activity from the carotid body (CB) has emerged as a principal cause of hypertension in a number of cardiovascular related pathologies, including obstructive sleep apnoea, heart failure and diabetes. Development of new targets and pharmacological treatment strategies aiming to reduce CB sensory activity may thus improve outcomes in these key patient cohorts. The present study investigated whether ecto-5'-nucleotidase (CD73), an enzyme that generates adenosine, is functionally important in modifying CB sensory activity and cardiovascular respiratory responses to hypoxia. Inhibition of CD73 by α,β-methylene ADP (AOPCP) in the whole CB preparation in vitro reduced basal discharge frequency by 76 ± 5% and reduced sensory activity throughout graded hypoxia. AOPCP also significantly attenuated elevations in sensory activity evoked by mitochondrial inhibition. These effects were mimicked by antagonism of adenosine receptors with 8-(p-sulfophenyl) theophylline. Infusion of AOPCP in vivo significantly decreased the hypoxic ventilatory response (Δ V ̇ E control 74 ± 6%, Δ V ̇ E AOPCP 64 ± 5%, P < 0.05). AOPCP also modified cardiovascular responses to hypoxia, as indicated by reduced elevations in heart rate and exaggerated changes in femoral vascular conductance and mean arterial blood pressure. Thus we identify CD73 as a novel regulator of CB sensory activity. Future investigations are warranted to clarify whether inhibition of CD73 can effectively reduce CB activity in CB-mediated cardiovascular pathology.
Collapse
Affiliation(s)
| | - Clare J. Ray
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Selina A. Pearson
- Mouse Pipelines, Wellcome Trust Sanger InstituteWellcome Genome CampusHinxtonCambridgeUK
| | - Andrew M. Coney
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Prem Kumar
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| |
Collapse
|
12
|
Holmes AP, Ray CJ, Thompson EL, Alshehri Z, Coney AM, Kumar P. Adrenaline activation of the carotid body: Key to CO 2 and pH homeostasis in hypoglycaemia and potential pathological implications in cardiovascular disease. Respir Physiol Neurobiol 2018; 265:92-99. [PMID: 29807139 DOI: 10.1016/j.resp.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022]
Abstract
Ventilatory and neuroendocrine counter-regulatory responses during hypoglycaemia are essential in order to maintain glycolysis and prevent rises in PaCO2 leading to systemic acidosis. The mammalian carotid body has emerged as an important driver of hyperpnoea and glucoregulation in hypoglycaemia. However, the adequate stimulus for CB stimulation in hypoglycaemia has remained controversial for over a decade. The recent finding that adrenaline is a physiological activator of CB in hypoglycaemia raises the intriguing possibility that CB stimulation and hyperpnoea may be necessary to maintain pH in other adrenaline-related hypermetabolic states such as exercise. This review will therefore focus on 1) The important functional contribution of the CB in the counter-regulatory and ventilatory response to hypoglycaemia, 2) the proposed mechanisms that cause CB stimulation in hypoglycaemia including hormonal activation by adrenaline and direct low glucose sensing and 3) the possible pathological consequences of repetitive CB activation by adrenaline that could potentially be targeted to reduce CB-mediated cardiovascular disease.
Collapse
Affiliation(s)
- Andrew P Holmes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Clare J Ray
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Emma L Thompson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Ziyad Alshehri
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Andrew M Coney
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Prem Kumar
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK.
| |
Collapse
|
13
|
Holmes AP, Ray CJ, Coney AM, Kumar P. Is Carotid Body Physiological O 2 Sensitivity Determined by a Unique Mitochondrial Phenotype? Front Physiol 2018; 9:562. [PMID: 29867584 PMCID: PMC5964187 DOI: 10.3389/fphys.2018.00562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian carotid body (CB) is the primary arterial chemoreceptor that responds to acute hypoxia, initiating systemic protective reflex responses that act to maintain O2 delivery to the brain and vital organs. The CB is unique in that it is stimulated at O2 levels above those that begin to impact on the metabolism of most other cell types. Whilst a large proportion of the CB chemotransduction cascade is well defined, the identity of the O2 sensor remains highly controversial. This short review evaluates whether the mitochondria can adequately function as acute O2 sensors in the CB. We consider the similarities between mitochondrial poisons and hypoxic stimuli in their ability to activate the CB chemotransduction cascade and initiate rapid cardiorespiratory reflexes. We evaluate whether the mitochondria are required for the CB to respond to hypoxia. We also discuss if the CB mitochondria are different to those located in other non-O2 sensitive cells, and what might cause them to have an unusually low O2 binding affinity. In particular we look at the potential roles of competitive inhibitors of mitochondrial complex IV such as nitric oxide in establishing mitochondrial and CB O2-sensitivity. Finally, we discuss novel signaling mechanisms proposed to take place within and downstream of mitochondria that link mitochondrial metabolism with cellular depolarization.
Collapse
Affiliation(s)
| | | | | | - Prem Kumar
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Gomez-Niño A, Docio I, Prieto-Lloret J, Simarro M, de la Fuente MA, Rocher A. Mitochondrial Complex I Dysfunction and Peripheral Chemoreflex Sensitivity in a FASTK-Deficient Mice Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:51-59. [DOI: 10.1007/978-3-319-91137-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|