1
|
Zhang J, Yuan P, Nichols CG, Maksaev G. Molecular basis of TRPV3 channel blockade by intracellular polyamines. Commun Biol 2025; 8:727. [PMID: 40348873 PMCID: PMC12065880 DOI: 10.1038/s42003-025-08103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
ThermoTRPV1-4 channels are involved in the regulation of multiple physiological processes, including thermo- and pain perception, thermoregulation, itch, and nociception and therefore tight control of their activity is a critical requirement for correct perception of noxious stimuli and pain. We previously reported a voltage-dependent inhibition of TRPV1-4 channels by intracellular polyamines that could be explained by high affinity spermine binding in, and passage through, the permeation path. Here, using electrophysiology and cryo-electron microscopy, we elucidate molecular details of TRPV3 blockade by endogenous spermine and its analog NASPM. We identify a high-affinity polyamine interaction site at the intracellular side of the pore, formed by residues E679 and E682, with no significant contribution of residues at the channel selectivity filter. A cryo-EM structure of TRPV3 in the presence of NASPM reveals conformational changes coupled to polyamine blockade. Paradoxically, although the TRPV3 'gating switch' is in the 'activated' configuration, the pore is closed at both gates. A modified blocking model, in which spermine interacts with the cytoplasmic entrance to the channel, from which spermine may permeate, or cause closure of the channel, provides a unifying explanation for electrophysiological and structural data and furnishes the essential background for further exploitation of this regulatory process.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Yuan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Kang H, Kim J, Park CH, Jeong B, So I. Direct modulation of TRPC ion channels by Gα proteins. Front Physiol 2024; 15:1362987. [PMID: 38384797 PMCID: PMC10880550 DOI: 10.3389/fphys.2024.1362987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
GPCR-Gi protein pathways are involved in the regulation of vagus muscarinic pathway under physiological conditions and are closely associated with the regulation of internal visceral organs. The muscarinic receptor-operated cationic channel is important in GPCR-Gi protein signal transduction as it decreases heart rate and increases GI rhythm frequency. In the SA node of the heart, acetylcholine binds to the M2 receptor and the released Gβγ activates GIRK (I(K,ACh)) channel, inducing a negative chronotropic action. In gastric smooth muscle, there are two muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3. M2 receptor activates the muscarinic receptor-operated nonselective cationic current (mIcat, NSCC(ACh)) and induces positive chronotropic effect. Meanwhile, M3 receptor induces hydrolysis of PIP2 and releases DAG and IP3. This IP3 increases intracellular Ca2+ and then leads to contraction of GI smooth muscles. The activation of mIcat is inhibited by anti-Gi/o protein antibodies in GI smooth muscle, indicating the involvement of Gαi/o protein in the activation of mIcat. TRPC4 channel is a molecular candidate for mIcat and can be directly activated by constitutively active Gαi QL proteins. TRPC4 and TRPC5 belong to the same subfamily and both are activated by Gi/o proteins. Initial studies suggested that the binding sites for G protein exist at the rib helix or the CIRB domain of TRPC4/5 channels. However, recent cryo-EM structure showed that IYY58-60 amino acids at ARD of TRPC5 binds with Gi3 protein. Considering the expression of TRPC4/5 in the brain, the direct G protein activation on TRPC4/5 is important in terms of neurophysiology. TRPC4/5 channels are also suggested as a coincidence detector for Gi and Gq pathway as Gq pathway increases intracellular Ca2+ and the increased Ca2+ facilitates the activation of TRPC4/5 channels. More complicated situation would occur when GIRK, KCNQ2/3 (IM) and TRPC4/5 channels are co-activated by stimulation of muscarinic receptors at the acetylcholine-releasing nerve terminals. This review highlights the effects of GPCR-Gi protein pathway, including dopamine, μ-opioid, serotonin, glutamate, GABA, on various oragns, and it emphasizes the importance of considering TRPC4/5 channels as crucial players in the field of neuroscience.
Collapse
Affiliation(s)
- Hana Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinhyeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Christine Haewon Park
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Byeongseok Jeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Maksaev G, Yuan P, Nichols CG. Blockade of TRPV channels by intracellular spermine. J Gen Physiol 2023; 155:e202213273. [PMID: 36912700 PMCID: PMC10038874 DOI: 10.1085/jgp.202213273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The Vanilloid thermoTRP (TRPV1-4) subfamily of TRP channels are involved in thermoregulation, osmoregulation, itch and pain perception, (neuro)inflammation and immune response, and tight control of channel activity is required for perception of noxious stimuli and pain. Here we report voltage-dependent modulation of each of human TRPV1, 3, and 4 by the endogenous intracellular polyamine spermine. As in inward rectifier K channels, currents are blocked in a strongly voltage-dependent manner, but, as in cyclic nucleotide-gated channels, the blockade is substantially reduced at more positive voltages, with maximal blockade in the vicinity of zero voltage. A kinetic model of inhibition suggests two independent spermine binding sites with different affinities as well as different degrees of polyamine permeability in TRPV1, 3, and 4. Given that block and relief occur over the physiological voltage range of action potentials, voltage-dependent polyamine block may be a potent modulator of TRPV-dependent excitability in multiple cell types.
Collapse
Affiliation(s)
- Grigory Maksaev
- Department of Cell Biology and Physiology, Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Ono N, Azuma YT. [Recent topics on interorgan communication networks and gut microbiota]. Nihon Yakurigaku Zasshi 2022; 157:321-324. [PMID: 36047144 DOI: 10.1254/fpj.22038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The living body is composed of diverse organ systems, each of which has its own characteristic control mechanisms and complex in vivo responses. Between the brain and organs such as the heart, kidney, liver, pancreas, gastrointestinal tract, and even muscles, there is a sophisticated and complex regulatory system. Coordinated interactions through communication between organs are essential for maintaining health. In this review, we introduce four research trends in inter-organ networks, with a focus on the digestive system: 1) Inter-organ networks on metabolic systems, 2) Inter-organ networks originating from the gastrointestinal tract, 3) Intestinal bacteria, that is one of the biggest topics in recent years, 4) Research results on the involvement of gut microbiota in the inter-organ network between the kidney and the gastrointestinal tract. An integrated understanding and investigation of the regulatory mechanisms of inter-organ communication networks are expected to extend healthy life span and improve quality of life.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science
| |
Collapse
|
5
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
6
|
Kim J, Moon SH, Kim T, Ko J, Jeon YK, Shin YC, Jeon JH, So I. Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:101-110. [PMID: 31908579 PMCID: PMC6940491 DOI: 10.4196/kjpp.2020.24.1.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sang Hui Moon
- Office of Medical Education, College of Medicine, Seoul National University, Seoul 03080, Korea.,Department of Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Taewook Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Young Keul Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ju-Hong Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
7
|
Structure-Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Cells 2019; 9:cells9010073. [PMID: 31892199 PMCID: PMC7017149 DOI: 10.3390/cells9010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The study of the structure–function relationship of ion channels has been one of the most challenging goals in contemporary physiology. Revelation of the three-dimensional (3D) structure of ion channels has facilitated our understanding of many of the submolecular mechanisms inside ion channels, such as selective permeability, voltage dependency, agonist binding, and inter-subunit multimerization. Identifying the structure–function relationship of the ion channels is clinically important as well since only such knowledge can imbue potential therapeutics with practical possibilities. In a sense, recent advances in the understanding of the structure–relationship of transient receptor potential canonical (TRPC) channels look promising since human TRPC channels are calcium-permeable, non-selective cation channels expressed in many tissues such as the gastrointestinal (GI) tract, kidney, heart, vasculature, and brain. TRPC channels are known to regulate GI contractility and motility, pulmonary hypertension, right ventricular hypertrophy, podocyte injury, seizure, fear, anxiety-like behavior, and many others. In this article, we tried to elaborate recent findings of Cryo-EM (cryogenic-electron microscopy) based structural information of TRPC 4 and 5 channels and domain-specific functions of the channel, such as G-protein mediated activation mechanism, extracellular modification of the channel, homo/hetero-tetramerization, and pharmacological gating mechanisms.
Collapse
|
8
|
Dryer SE, Kim EY. Permeation and Rectification in Canonical Transient Receptor Potential-6 (TRPC6) Channels. Front Physiol 2018; 9:1055. [PMID: 30123138 PMCID: PMC6085515 DOI: 10.3389/fphys.2018.01055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023] Open
Abstract
Transient receptor potential-6 channels are widely expressed cation channels that play a role in regulating Ca2+ dynamics, especially during G protein-coupled receptor signaling. The permeation of cations through TRPC6 is complex and the relative permeability to Ca2+ relative to monovalent cations appears to be highly voltage-dependent and is reduced upon membrane depolarization. Many investigators have observed complex current-voltage (I-V) relationships in recordings of TRPC6 channels, which often manifest as flattening of I-V curves between 0 and +40 mV and negative to -60 mV. These features are especially common in recordings from TRPC6 channels expressed in heterologous expression systems. Indeed, it is sometimes argued that marked rectification at both negative and positive membrane potentials is a defining feature of TRPC6, and that recordings in which these features are reduced or absent cannot reflect activity of TRPC6. Here we present a review of the literature to show that complex rectification is not seen in every cell type expressing TRPC6, even when comparing recordings made from the same groups of investigators, or in recordings from what is nominally the same heterologous expression system. Therefore other criteria, such as gene knockout or knockdown, or the use of newly emerging selective blockers, must be used to ascertain that a given current reflects activity of endogenously expressed TRPC6 channels. We also discuss the possibility that complex rectification may not be an intrinsic property of TRPC6 in cells where it is observed, and may instead reflect presence of endogenous substances that cause voltage-dependent inhibition of the channels.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.,Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, United States
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
9
|
Abstract
The content of spermidine and spermine in mammalian cells has important roles in protein and nucleic acid synthesis and structure, protection from oxidative damage, activity of ion channels, cell proliferation, differentiation, and apoptosis. Spermidine is essential for viability and acts as the precursor of hypusine, a post-translational addition to eIF5A allowing the translation of mRNAs encoding proteins containing polyproline tracts. Studies with Gy mice and human patients with the very rare X-linked genetic condition Snyder-Robinson syndrome that both lack spermine synthase show clearly that the correct spermine:spermidine ratio is critical for normal growth and development.
Collapse
Affiliation(s)
- Anthony E Pegg
- From the Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|