1
|
Braga DL, Mousovich-Neto F, Tonon-da-Silva G, Salgueiro WG, Mori MA. Epigenetic changes during ageing and their underlying mechanisms. Biogerontology 2020; 21:423-443. [PMID: 32356238 DOI: 10.1007/s10522-020-09874-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
As life expectancy increases worldwide, ageing and age-related diseases arise as a major issue for societies around the globe. Understanding the biological mechanisms underlying the ageing process is thus instrumental for the development of efficient interventions aimed to prevent and treat age-related conditions. Current knowledge in the biogerontology field points to epigenetics as a critical component of the ageing process, not only by serving as a bona-fide marker of biological age but also by controlling and conferring inheritability to cellular and organismal ageing. This is reflected by a myriad of evidences demonstrating the relationship between DNA methylation, histone modifications, chromatin remodeling and small non-coding RNAs and several age-related phenotypes. Given the reversibility of epigenetic alterations, epigenetic reprogramming may also be envisioned as a potential approach to treat age-related disorders. Here we review how different types of epigenetic mechanisms are involved in the ageing process. In addition, we highlight how interventions modulate epigenetics and thus promote health- and lifespan.
Collapse
Affiliation(s)
- Deisi L Braga
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Willian G Salgueiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo, 13083-862, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, São Paulo, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
2
|
Tikhodeyev ON. Heredity determined by the environment: Lamarckian ideas in modern molecular biology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135521. [PMID: 31784162 DOI: 10.1016/j.scitotenv.2019.135521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Inheritance of acquired characteristics (IAC) is a well-documented phenomenon occurring both in eukaryotes and prokaryotes. However, it is not included in current biological theories, and the risks of IAC induction are not assessed by genetic toxicology. Furthermore, different kinds of IAC (transgenerational and intergenerational inheritance, genotrophic changes, dauermodifications, vernalization, and some others) are traditionally considered in isolation, thus impeding the development of a comprehensive view on IAC as a whole. Herein, we discuss all currently known kinds of IAC as well as their mechanisms, if unraveled. We demonstrate that IAC is a special case of genotype × environment interactions requiring certain genotypes and, as a rule, prolonged exposure to the inducing influence. Most mechanisms of IAC are epigenetic; these include but not limited to DNA methylation, histone modifications, competition of transcription factors, induction of non-coding RNAs, inhibition of plastid translation, and curing of amyloid and non-amyloid prions. In some cases, changes in DNA sequences or host-microbe interactions are involved as well. The only principal difference between IAC and other environmentally inducible hereditary changes such as the effects of radiation is the origin of the changes: in case of IAC they are definite (determined by the environment), while the others are indefinite (arise from environmentally provoked molecular stochasticity). At least some kinds of IAC are adaptive and could be regarded as the elements of natural selection, though non-canonical in their origin and molecular nature. This is a probable way towards synthesis of the Lamarckian and Darwinian evolutionary conceptions. Applied issues of IAC are also discussed.
Collapse
Affiliation(s)
- Oleg N Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, University emb. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
3
|
Ryan CP, Kuzawa CW. Germline epigenetic inheritance: Challenges and opportunities for linking human paternal experience with offspring biology and health. Evol Anthropol 2020; 29:180-200. [DOI: 10.1002/evan.21828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Calen P. Ryan
- Department of AnthropologyNorthwestern University Evanston Illinois USA
| | - Christopher W. Kuzawa
- Department of AnthropologyNorthwestern University Evanston Illinois USA
- Institute for Policy Research Northwestern University Evanston Illinois USA
| |
Collapse
|
4
|
Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A. Facial Genetics: A Brief Overview. Front Genet 2018; 9:462. [PMID: 30386375 PMCID: PMC6198798 DOI: 10.3389/fgene.2018.00462] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Historically, craniofacial genetic research has understandably focused on identifying the causes of craniofacial anomalies and it has only been within the last 10 years, that there has been a drive to detail the biological basis of normal-range facial variation. This initiative has been facilitated by the availability of low-cost hi-resolution three-dimensional systems which have the ability to capture the facial details of thousands of individuals quickly and accurately. Simultaneous advances in genotyping technology have enabled the exploration of genetic influences on facial phenotypes, both in the present day and across human history. There are several important reasons for exploring the genetics of normal-range variation in facial morphology. - Disentangling the environmental factors and relative parental biological contributions to heritable traits can help to answer the age-old question "why we look the way that we do?" - Understanding the etiology of craniofacial anomalies; e.g., unaffected family members of individuals with non-syndromic cleft lip/palate (nsCL/P) have been shown to differ in terms of normal-range facial variation to the general population suggesting an etiological link between facial morphology and nsCL/P. - Many factors such as ancestry, sex, eye/hair color as well as distinctive facial features (such as, shape of the chin, cheeks, eyes, forehead, lips, and nose) can be identified or estimated using an individual's genetic data, with potential applications in healthcare and forensics. - Improved understanding of historical selection and adaptation relating to facial phenotypes, for example, skin pigmentation and geographical latitude. - Highlighting what is known about shared facial traits, medical conditions and genes.
Collapse
Affiliation(s)
- Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Laurence J. Howe
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sarah Lewis
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexei Zhurov
- Applied Clinical Research and Public Health, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|