1
|
Jolly JT, Blackburn JS. The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease. Int J Mol Sci 2025; 26:1528. [PMID: 40003994 PMCID: PMC11855589 DOI: 10.3390/ijms26041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins' structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders.
Collapse
Affiliation(s)
- Jeffery T. Jolly
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
3
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Abstract
Mg2+ is essential for many cellular and physiological processes, including muscle contraction, neuronal activity, and metabolism. Consequently, the blood Mg2+ concentration is tightly regulated by balanced intestinal Mg2+ absorption, renal Mg2+ excretion, and Mg2+ storage in bone and soft tissues. In recent years, the development of novel transgenic animal models and identification of Mendelian disorders has advanced our current insight in the molecular mechanisms of Mg2+ reabsorption in the kidney. In the proximal tubule, Mg2+ reabsorption is dependent on paracellular permeability by claudin-2/12. In the thick ascending limb of Henle's loop, the claudin-16/19 complex provides a cation-selective pore for paracellular Mg2+ reabsorption. The paracellular Mg2+ reabsorption in this segment is regulated by the Ca2+-sensing receptor, parathyroid hormone, and mechanistic target of rapamycin (mTOR) signaling. In the distal convoluted tubule, the fine tuning of Mg2+ reabsorption takes place by transcellular Mg2+ reabsorption via transient receptor potential melastatin-like types 6 and 7 (TRPM6/TRPM7) divalent cation channels. Activity of TRPM6/TRPM7 is dependent on hormonal regulation, metabolic activity, and interacting proteins. Basolateral Mg2+ extrusion is still poorly understood but is probably dependent on the Na+ gradient. Cyclin M2 and SLC41A3 are the main candidates to act as Na+/Mg2+ exchangers. Consequently, disturbances of basolateral Na+/K+ transport indirectly result in impaired renal Mg2+ reabsorption in the distal convoluted tubule. Altogether, this review aims to provide an overview of the molecular mechanisms of Mg2+ reabsorption in the kidney, specifically focusing on transgenic mouse models and human hereditary diseases.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Gyimesi G, Hediger MA. Systematic in silico discovery of novel solute carrier-like proteins from proteomes. PLoS One 2022; 17:e0271062. [PMID: 35901096 PMCID: PMC9333335 DOI: 10.1371/journal.pone.0271062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
- * E-mail: (GG); (MAH)
| | - Matthias A. Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
- * E-mail: (GG); (MAH)
| |
Collapse
|
6
|
Tseng MH, Yang SS, Sung CC, Ding JJ, Hsu YJ, Chu SM, Lin SH. Novel CNNM2 Mutation Responsible for Autosomal-Dominant Hypomagnesemia With Seizure. Front Genet 2022; 13:875013. [PMID: 35846113 PMCID: PMC9277586 DOI: 10.3389/fgene.2022.875013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
CNNM2 is primarily expressed in the brain and distal convoluted tubule (DCT) of the kidney. Mutations in CNNM2 have been reported to cause hypomagnesemia, seizure, and intellectual disability (HSMR) syndrome. However, the clinical and functional effect of CNNM2 mutations remains incompletely understood. We report our clinical encounter with a 1-year-old infant with HSMR features. Mutation screening for this trio family was performed using next-generation sequencing (NGS)-based whole exome sequencing (WES) with the identified mutation verified by Sanger sequencing. We identified a de novo heterozygous mutation c.G1439T (R480L) in the essential cystathionine β-synthase (CBS) domain of CNNM2 encoding CNNM2 (cyclin M2) without any other gene mutations related to hypomagnesemia. The amino acid involved in this missense mutation was conserved in different species. It was also found to be pathogenic based on the different software prediction models and ACGME criteria. In vitro studies revealed a higher expression of the CNNM2-R480L mutant protein compared to that of the wild-type CNNM2. Like the CNNM2-wild type, proper localization of CNNM2-R480L was shown on immunocytochemistry images. The Mg2+ efflux assay in murine DCT (mDCT) cells revealed a significant increase in intracellular Mg2+ green in CNNM2-R480L compared to that in CNNM2-WT. By using a simulation model, we illustrate that the R480L mutation impaired the interaction between CNNM2 and ATP-Mg2+. We propose that this novel R480L mutation in the CNNM2 gene led to impaired binding between Mg2+-ATP and CNNM2 and diminished Mg2+ efflux, manifesting clinically as refractory hypomagnesemia.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Xiamen Chang Gung Hospital, Ximen, China
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Chu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 2022; 79:418. [PMID: 35819535 PMCID: PMC9276622 DOI: 10.1007/s00018-022-04442-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
Collapse
Affiliation(s)
- G A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - R J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Bai Z, Feng J, Franken GAC, Al’Saadi N, Cai N, Yu AS, Lou L, Komiya Y, Hoenderop JGJ, de Baaij JHF, Yue L, Runnels LW. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol 2021; 19:e3001496. [PMID: 34928937 PMCID: PMC8726484 DOI: 10.1371/journal.pbio.3001496] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2022] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis. Magnesium is essential for cellular life, but how is it homeostatically controlled? This study shows that proteins of the CNNM family bind to the TRPM7 channel to stimulate divalent cation entry into cells, independent of their function in regulating magnesium ion efflux.
Collapse
Affiliation(s)
- Zhiyong Bai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jianlin Feng
- UCONN Health Center, Farmington, New Mexico, United States of America
| | | | - Namariq Al’Saadi
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- University of Misan, Amarah, Iraq
| | - Na Cai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Albert S. Yu
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Liping Lou
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yuko Komiya
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | | | | | - Lixia Yue
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Loren W. Runnels
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Funato Y, Miki H. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg 2+ transporters. J Pharmacol Sci 2021; 148:14-18. [PMID: 34924118 DOI: 10.1016/j.jphs.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
Cyclin M (CNNM) and its prokaryotic ortholog CorC belong to a family of proteins that function as Mg2+-extruding transporters by stimulating Na+/Mg2+ exchange, and thereby control intracellular Mg2+ levels. The Mg2+-extruding function of CNNM is inhibited by the direct binding of an oncogenic protein, phosphatase of regenerating liver (PRL), and this inhibition is responsible for the PRL-driven malignant progression of cancers. Studies with mouse strains deficient for the CNNM gene family revealed the importance of CNNM4 and CNNM2 in maintaining organismal Mg2+ homeostasis by participating in intestinal Mg2+ absorption and renal reabsorption, respectively. Moreover, CNNM proteins are involved in various diseases, and gene mutations in CNNM2 and CNNM4 cause dominant familial hypomagnesemia and Jalili syndrome, respectively. Genome wide association studies have also revealed the importance of CNNM2 in multiple major diseases, such as hypertension and schizophrenia. Collectively, the molecular and biological characterizations of CNNM/CorC show that they are an intriguing therapeutic target; the current status of drug development targeting these proteins is also discussed.
Collapse
Affiliation(s)
- Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Ellison DH, Maeoka Y, McCormick JA. Molecular Mechanisms of Renal Magnesium Reabsorption. J Am Soc Nephrol 2021; 32:2125-2136. [PMID: 34045316 PMCID: PMC8729834 DOI: 10.1681/asn.2021010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023] Open
Abstract
Magnesium is an essential cofactor in many cellular processes, and aberrations in magnesium homeostasis can have life-threatening consequences. The kidney plays a central role in maintaining serum magnesium within a narrow range (0.70-1.10 mmol/L). Along the proximal tubule and thick ascending limb, magnesium reabsorption occurs via paracellular pathways. Members of the claudin family form the magnesium pores in these segments, and also regulate magnesium reabsorption by adjusting the transepithelial voltage that drives it. Along the distal convoluted tubule transcellular reabsorption via heteromeric TRPM6/7 channels predominates, although paracellular reabsorption may also occur. In this segment, the NaCl cotransporter plays a critical role in determining transcellular magnesium reabsorption. Although the general machinery involved in renal magnesium reabsorption has been identified by studying genetic forms of magnesium imbalance, the mechanisms regulating it are poorly understood. This review discusses pathways of renal magnesium reabsorption by different segments of the nephron, emphasizing newer findings that provide insight into regulatory process, and outlining critical unanswered questions.
Collapse
Affiliation(s)
- David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon,Veterans Affairs Portland Healthcare System, Portland, Oregon
| | - Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A. McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
11
|
Expression of glucose and magnesium transport-associated genes in whole blood RNA of lactating ewes supplemented with magnesium. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Hirota C, Takashina Y, Yoshino Y, Hasegawa H, Okamoto E, Matsunaga T, Ikari A. Reactive Oxygen Species Downregulate Transient Receptor Potential Melastatin 6 Expression Mediated by the Elevation of miR-24-3p in Renal Tubular Epithelial Cells. Cells 2021; 10:cells10081893. [PMID: 34440664 PMCID: PMC8393788 DOI: 10.3390/cells10081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background: A low level of serum magnesium ion (Mg2+) is associated with type 2 diabetes mellitus (T2D). However, the molecular mechanism of Mg2+ deficiency has not been fully clarified. The current study sought to assesses the effect of reactive oxygen species on the expression of Mg2+ channels and miRNA. Methods: The expression of Mg2+ channels and miRNA were examined by real-time polymerase chain reaction. Intracellular Mg2+ concentration was measured by Magnesium Green fluorescence measurement. Results: The mRNA level of transient receptor potential melastatin 6 (TRPM6), which functions as Mg2+ influx channel in the distal convoluted tubule (DCT) of the kidney, was decreased by glycated albumin (GA), but not by insulin in rat renal tubule-derived NRK-52E cells. The mRNA levels of TRPM7, a homologue of TRPM6, and CNNM2, a Mg2+ efflux transporter located at the basolateral membrane of DCT, were changed by neither GA nor insulin. The generation of reactive oxygen species (ROS) was increased by GA. Hydrogen peroxide (H2O2) dose-dependently decreased TRPM6 mRNA, but it inversely increased the reporter activity of TRPM6. H2O2 accelerated the degradation of TRPM6 mRNA in actinomycin D assay without affecting TRPM7 and CNNM2 mRNA expressions. Nine miRNAs were considered as candidates for the regulator of stability of TRPM6 mRNA. Among them, miR-24-3p expression was increased by H2O2. The H2O2-induced reduction of TRPM6 mRNA was rescued by miR-24-3p siRNA. Magnesium Green fluorescence measurement showed that Mg2+ influx is suppressed by H2O2, which was rescued by an antioxidant and miR-24-3p siRNA. Conclusions: We suggest that GA decreases TRPM6 expression mediated by the elevation of ROS and miR-24-3p in renal tubular epithelial cells of T2D.
Collapse
Affiliation(s)
- Chieko Hirota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Yui Takashina
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Hajime Hasegawa
- Saitama Medical Center, Department of Nephrology and Hypertension, Saitama Medical University, Saitama 350-8550, Japan;
| | - Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (C.H.); (Y.T.); (Y.Y.); (E.O.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
13
|
Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P. Diseases caused by mutations in the Na +/K + pump α1 gene ATP1A1. Am J Physiol Cell Physiol 2021; 321:C394-C408. [PMID: 34232746 DOI: 10.1152/ajpcell.00059.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cell survival requires function of the Na+/K+ pump; the heteromeric protein that hydrolyzes ATP to extrude Na+ and import K+ across the plasmalemma, thereby building and maintaining these ions' electrochemical gradients. Numerous dominant diseases caused by mutations in genes encoding for Na+/K+ pump catalytic (α) subunit isoforms highlight the importance of this protein. Here, we review literature describing disorders caused by missense mutations in ATP1A1, the gene encoding the ubiquitously expressed α1 isoform of the Na+/K+ pump. These various maladies include primary aldosteronism with secondary hypertension, an endocrine syndrome, Charcot-Marie-Tooth disease, a peripheral neuropathy, complex spastic paraplegia, another neuromuscular disorder, as well as hypomagnesemia accompanied by seizures and cognitive delay, a condition affecting the renal and central nervous systems. This article focuses on observed commonalities among these mutations' functional effects, as well as on the special characteristics that enable each particular mutation to exclusively affect a certain system, without affecting others. In this respect, it is clear how somatic mutations localized to adrenal adenomas increase aldosterone production without compromising other systems. However, it remains largely unknown how and why some but not all de novo germline or familial mutations (where the mutant must be expressed in numerous tissues) produce a specific disease and not the other diseases. We propose hypotheses to explain this observation and the approaches that we think will drive future research on these debilitating disorders to develop novel patient-specific treatments by combining the use of heterologous protein-expression systems, patient-derived pluripotent cells, and gene-edited cell and mouse models.
Collapse
Affiliation(s)
- Elisa D Biondo
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Giovanna Ababioh
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lois Méndez
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
14
|
Becker SK, Sponder G, Sandhu MA, Trappe S, Kolisek M, Aschenbach JR. The Combined Influence of Magnesium and Insulin on Central Metabolic Functions and Expression of Genes Involved in Magnesium Homeostasis of Cultured Bovine Adipocytes. Int J Mol Sci 2021; 22:ijms22115897. [PMID: 34072724 PMCID: PMC8199494 DOI: 10.3390/ijms22115897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
At the onset of lactation, dairy cows suffer from insulin resistance, insulin deficiency or both, similar to human diabetes, resulting in lipolysis, ketosis and fatty liver. This work explored the combined effects of different levels of magnesium (0.1, 0.3, 1 and 3 mM) and insulin (25, 250 and 25,000 pM) on metabolic pathways and the expression of magnesium-responsive genes in a bovine adipocyte model. Magnesium starvation (0.1 mM) and low insulin (25 pM) independently decreased or tended to decrease the accumulation of non-polar lipids and uptake of the glucose analog 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-deoxyglucose (6-NBDG). Activity of glycerol 3-phosphate dehydrogenase (GPDH) was highest at 25 pM insulin and 3 mM magnesium. Expression of SLC41A1 and SLC41A3 was reduced at 0.1 mM magnesium either across insulin concentrations (SLC41A1) or at 250 pM insulin (SLC41A3). MAGT1 expression was reduced at 3 mM magnesium. NIPA1 expression was reduced at 3 mM and 0.1 mM magnesium at 25 and 250 pM insulin, respectively. Expression of SLC41A2, CNNM2, TRPM6 and TRPM7 was not affected. We conclude that magnesium promotes lipogenesis in adipocytes and inversely regulates the transcription of genes that increase vs. decrease cytosolic magnesium concentration. The induction of GAPDH activity by surplus magnesium at low insulin concentration can counteract excessive lipomobilization.
Collapse
Affiliation(s)
- Sandra K. Becker
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
| | - Mansur A. Sandhu
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
- Department of Veterinary Biomedical Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Susanne Trappe
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia;
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
- Correspondence: ; Tel.: +49-30-838-62601; Fax: +49-30-838-462601
| |
Collapse
|
15
|
Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Sci Rep 2021; 11:8217. [PMID: 33859252 PMCID: PMC8050252 DOI: 10.1038/s41598-021-87548-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Patients with mutations in Cyclin M2 (CNNM2) suffer from hypomagnesaemia, seizures, and intellectual disability. Although the molecular function of CNNM2 is under debate, the protein is considered essential for renal Mg2+ reabsorption. Here, we used a Cnnm2 knock out mouse model, generated by CRISPR/Cas9 technology, to assess the role of CNNM2 in Mg2+ homeostasis. Breeding Cnnm2+/- mice resulted in a Mendelian distribution at embryonic day 18. Nevertheless, only four Cnnm2-/- pups were born alive. The Cnnm2-/- pups had a significantly lower serum Mg2+ concentration compared to wildtype littermates. Subsequently, adult Cnnm2+/- mice were fed with low, control, or high Mg2+ diets for two weeks. Adult Cnnm2+/- mice showed mild hypomagnesaemia compared to Cnnm2+/+ mice and increased serum Ca2+ levels, independent of dietary Mg2+ intake. Faecal analysis displayed increased Mg2+ and Ca2+ excretion in the Cnnm2+/- mice. Transcriptional profiling of Trpm6, Trpm7, and Slc41a1 in kidneys and colon did not reveal effects based on genotype. Microcomputed tomography analysis of the femurs demonstrated equal bone morphology and density. In conclusion, CNNM2 is vital for embryonic development and Mg2+ homeostasis. Our data suggest a previously undescribed role of CNNM2 in the intestine, which may contribute to the Mg2+ deficiency in mice and patients.
Collapse
|
16
|
Mg 2+ Transporters in Digestive Cancers. Nutrients 2021; 13:nu13010210. [PMID: 33450887 PMCID: PMC7828344 DOI: 10.3390/nu13010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Despite magnesium (Mg2+) representing the second most abundant cation in the cell, its role in cellular physiology and pathology is far from being elucidated. Mg2+ homeostasis is regulated by Mg2+ transporters including Mitochondrial RNA Splicing Protein 2 (MRS2), Transient Receptor Potential Cation Channel Subfamily M, Member 6/7 (TRPM6/7), Magnesium Transporter 1 (MAGT1), Solute Carrier Family 41 Member 1 (SCL41A1), and Cyclin and CBS Domain Divalent Metal Cation Transport Mediator (CNNM) proteins. Recent data show that Mg2+ transporters may regulate several cancer cell hallmarks. In this review, we describe the expression of Mg2+ transporters in digestive cancers, the most common and deadliest malignancies worldwide. Moreover, Mg2+ transporters’ expression, correlation and impact on patient overall and disease-free survival is analyzed using Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. Finally, we discuss the role of these Mg2+ transporters in the regulation of cancer cell fates and oncogenic signaling pathways.
Collapse
|
17
|
Zhang H, Wu Y, Jiang Y. CNNM2-Related Disorders: Phenotype and Its Severity Were Associated With the Mode of Inheritance. Front Pediatr 2021; 9:699568. [PMID: 34604137 PMCID: PMC8481361 DOI: 10.3389/fped.2021.699568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
CNNM2 (Cystathionine-β-synthase-pair Domain Divalent Metal Cation Transport Mediator 2) pathogenic variants have been reported to cause hypomagnesemia, epilepsy, and intellectual disability/developmental delay (ID/DD). We identified two new cases with CNNM2 novel de novo pathogenic variants, c.814T>C and c.976G>C. They both presented with infantile-onset epilepsy with DD and hypomagnesemia refractory to magnesium supplementation. To date, 21 cases with CNNM2-related disorders have been reported. We combined all 23 cases to analyze the features of CNNM2-related disorders. The phenotypes can be classified into three types: type 1, autosomal dominant (AD) inherited simple hypomagnesemia; type 2, AD inherited hypomagnesemia with epilepsy and ID/DD; and type 3, autosomal recessive (AR) inherited hypomagnesemia with epilepsy and ID/DD. All five type 1 cases had no epilepsy or ID/DD; they all had hypomagnesemia, and three of them presented with symptoms secondary to hypomagnesemia. Fifteen type 2 patients could have ID/DD and seizures, which can be controlled with antiseizure medications (ASMs); their variations clustered in the DUF21 domain of CNNM2. All three type 3 patients had seizures from 1 to 6 days after birth; the seizures were refractory, and 1/3 had status epilepticus; ID/DD in these AR-inherited cases was more severe than that of AD-inherited cases; they all had abnormalities of brain magnetic resonance imaging (MRI). Except for one patient whose serum magnesium was the lower limit of normal, others had definite hypomagnesemia. Hypomagnesemia could be improved after magnesium supplement but could not return to the normal level. Variations in the CBS2 domain may be related to lower serum magnesium. However, there was no significant difference in the level of serum magnesium among the patients with three different types of CNNM2-related disorders. The severity of different phenotypes was therefore not explained by decreased serum magnesium. We expanded the spectrum of CNNM2 variants and classified the phenotypes of CNNM2-related disorders into three types. We found that DUF21 domain variations were most associated with CNNM2-related central nervous system phenotypes, whereas hypomagnesemia was more pronounced in patients with CBS2 domain variations, and AR-inherited CNNM2-related disorders had the most severe phenotype. These results provide important clues for further functional studies of CNNM2 and provide basic foundations for more accurate genetic counseling.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
18
|
Rodelo-Haad C, Pendón-Ruiz de Mier MV, Díaz-Tocados JM, Martin-Malo A, Santamaria R, Muñoz-Castañeda JR, Rodríguez M. The Role of Disturbed Mg Homeostasis in Chronic Kidney Disease Comorbidities. Front Cell Dev Biol 2020; 8:543099. [PMID: 33282857 PMCID: PMC7688914 DOI: 10.3389/fcell.2020.543099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Some of the critical mechanisms that mediate chronic kidney disease (CKD) progression are associated with vascular calcifications, disbalance of mineral metabolism, increased oxidative and metabolic stress, inflammation, coagulation abnormalities, endothelial dysfunction, or accumulation of uremic toxins. Also, it is widely accepted that pathologies with a strong influence in CKD progression are diabetes, hypertension, and cardiovascular disease (CVD). A disbalance in magnesium (Mg) homeostasis, more specifically hypomagnesemia, is associated with the development and progression of the comorbidities mentioned above, and some mechanisms might explain why low serum Mg is associated with negative clinical outcomes such as major adverse cardiovascular and renal events. Furthermore, it is likely that hypomagnesemia causes the release of inflammatory cytokines and C-reactive protein and promotes insulin resistance. Animal models have shown that Mg supplementation reverses vascular calcifications; thus, clinicians have focused on the potential benefits that Mg supplementation may have in humans. Recent evidence suggests that Mg reduces coronary artery calcifications and facilitates peripheral vasodilation. Mg may reduce vascular calcification by direct inhibition of the Wnt/β-catenin signaling pathway. Furthermore, Mg deficiency worsens kidney injury induced by an increased tubular load of phosphate. One important consequence of excessive tubular load of phosphate is the reduction of renal tubule expression of α-Klotho in moderate CKD. Low Mg levels worsen the reduction of Klotho induced by the tubular load of phosphate. Evidence to support clinical translation is yet insufficient, and more clinical studies are required to claim enough evidence for decision-making in daily practice. Meanwhile, it seems reasonable to prevent and treat Mg deficiency. This review aims to summarize the current understanding of Mg homeostasis, the potential mechanisms that may mediate the effect of Mg deficiency on CKD progression, CVD, and mortality.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - M Victoria Pendón-Ruiz de Mier
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Miguel Díaz-Tocados
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain
| | - Alejandro Martin-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Santamaria
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Mariano Rodríguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
20
|
Giménez-Mascarell P, Oyenarte I, González-Recio I, Fernández-Rodríguez C, Corral-Rodríguez MÁ, Campos-Zarraga I, Simón J, Kostantin E, Hardy S, Díaz Quintana A, Zubillaga Lizeaga M, Merino N, Diercks T, Blanco FJ, Díaz Moreno I, Martínez-Chantar ML, Tremblay ML, Müller D, Siliqi D, Martínez-Cruz LA. Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. Int J Mol Sci 2019; 20:E6279. [PMID: 31842432 PMCID: PMC6940986 DOI: 10.3390/ijms20246279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The four member family of "Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.
Collapse
Grants
- ETORTEK IE05-147 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- IE07-202 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- 7/13/08/2006/11 Diputación Foral de Bizkaia
- 7/13/08/2005/14 Diputación Foral de Bizkaia
- BFU2010-17857 Ministerio de Ciencia e Innovación
- BFU2013-47531-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2014-068464 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BFU2016-77408-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2017-080435 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CSD2008-00005 MICINN CONSOLIDER-INGENIO 2010 Program
- BAG MX20113 Diamond Light source
- 2013111114 Gobierno Vasco-Departamento de Salud
- SAF2017-87301-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO15/CA/014 EITB Maratoia
- SEV-2016-0644 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 12.01.134/2bT4 Berlin Institute of Health
- #343439 Canadian Institute for Health Research
- MX15832-9 Diamond Light Source
- MX15832-10 Diamond Light Source
- PGC2018-096049-B100 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-83810-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI2010-17 Departamento de Educación, Universidades e Investigación del Gobierno Vasco
- BAG 2019073624 ALBA Synchrotron
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Iker Oyenarte
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Carmen Fernández-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - María Ángeles Corral-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Igone Campos-Zarraga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Elie Kostantin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Serge Hardy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Antonio Díaz Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - Mara Zubillaga Lizeaga
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Francisco J. Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Irene Díaz Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain
| | - Michel L. Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts medizin, 13353 Berlin, Germany;
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| |
Collapse
|
21
|
Giménez-Mascarell P, González-Recio I, Fernández-Rodríguez C, Oyenarte I, Müller D, Martínez-Chantar ML, Martínez-Cruz LA. Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators. Int J Mol Sci 2019; 20:1135. [PMID: 30845649 PMCID: PMC6429129 DOI: 10.3390/ijms20051135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclin and cystathionine β-synthase (CBS) domain magnesium transport mediators, CNNMs, are key players in maintaining the homeostasis of magnesium in different organs. The human family includes four members, whose impaired activity causes diseases such as Jalili Syndrome or Familial Hypomagnesemia, but is also linked to neuropathologic disorders, altered blood pressure, and infertility. Recent findings demonstrated that CNNMs are associated with the highly oncogenic phosphatases of the regenerating liver to promote tumor growth and metastasis, which has attracted renewed focus on their potential exploitation as targets for cancer treatment. However, the exact function of CNNMs remains unclear and is subject to debate, proposed as either direct transporters, sensors, or homeostatic factors. This review gathers the current structural knowledge on the CNNM family, highlighting similarities and differences with the closely related structural partners such as the bacterial Mg2+/Co2+ efflux protein CorC and the Mg2+ channel MgtE.
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Irene González-Recio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Cármen Fernández-Rodríguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Iker Oyenarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts Medizin, Berlin, 13353 Berlin, Germany.
| | - María Luz Martínez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
22
|
Accogli A, Scala M, Calcagno A, Napoli F, Di Iorgi N, Arrigo S, Mancardi MM, Prato G, Pisciotta L, Nagel M, Severino M, Capra V. CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations. Eur J Med Genet 2018; 62:198-203. [PMID: 30026055 DOI: 10.1016/j.ejmg.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/01/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg2+) plays a crucial role in many biological processes especially in the brain, heart and skeletal muscle. Mg2+ homeostasis is regulated by intestinal absorption and renal reabsorption, involving a combination of different epithelial transport pathways. Mutations in any of these transporters result in hypomagnesemia with variable clinical presentations. Among these, CNNM2 is found along the basolateral membrane of distal tubular segments where it is involved in Mg2+ reabsorption. To date, heterozygous mutations in CNNM2 have been associated with a variable phenotype, ranging from isolated hypomagnesemia to intellectual disability and epilepsy. The only homozygous mutation reported so far, is responsible for hypomagnesemia associated with a severe neurological phenotype characterized by refractory epilepsy, microcephaly, severe global developmental delay and intellectual disability. Here, we report the second homozygous CNNM2 mutation (c.1642G > A,p.Val548Met) in a Moroccan patient, presenting with hypomagnesemia and severe epileptic encephalopathy. Thus, we review and discuss the phenotypic spectrum associated with CNNM2 mutations.
Collapse
Affiliation(s)
- Andrea Accogli
- UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy; Università degli studi di Genova, Italy
| | - Marcello Scala
- UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy; Università degli studi di Genova, Italy
| | | | - Flavia Napoli
- UOC Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Università degli studi di Genova, Italy; UOC Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - Serena Arrigo
- UOC Gastroenterologia and Endoscopia Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Giulia Prato
- UOC Neuropsichiatria Infantile - Centro Epilessia, Istituto Giannina Gaslini, Genova, Italy
| | - Livia Pisciotta
- Università degli studi di Genova, Italy; UOC Neuropsichiatria Infantile - Centro Epilessia, Istituto Giannina Gaslini, Genova, Italy
| | - Mato Nagel
- Center for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | | | - Valeria Capra
- UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy.
| |
Collapse
|
23
|
van Megen WH, Grimm PR, Welling PA, van der Wijst J. Renal sodium and magnesium reabsorption are not coupled in a mouse model of Gordon syndrome. Physiol Rep 2018; 6:e13728. [PMID: 30030908 PMCID: PMC6054696 DOI: 10.14814/phy2.13728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022] Open
Abstract
Active reabsorption of magnesium (Mg2+ ) in the distal convoluted tubule (DCT) of the kidney is crucial for maintaining Mg2+ homeostasis. Impaired activity of the Na+ -Cl- -cotransporter (NCC) has been associated with hypermagnesiuria and hypomagnesemia, while increased activity of NCC, as observed in patients with Gordon syndrome, is not associated with alterations in Mg2+ balance. To further elucidate the possible interrelationship between NCC activity and renal Mg2+ handling, plasma Mg2+ levels and urinary excretion of sodium (Na+ ) and Mg2+ were measured in a mouse model of Gordon syndrome. In this model, DCT1-specific expression of a constitutively active mutant form of the NCC-phosphorylating kinase, SPAK (CA-SPAK), increases NCC activity and hydrochlorothiazide (HCTZ)-sensitive Na+ reabsorption. These mice were normomagnesemic and HCTZ administration comparably reduced plasma Mg2+ levels in CA-SPAK mice and control littermates. As inferred by the initial response to HCTZ, CA-SPAK mice exhibited greater NCC-dependent Na+ reabsorption together with decreased Mg2+ reabsorption, compared to controls. Following prolonged HCTZ administration (4 days), CA-SPAK mice exhibited higher urinary Mg2+ excretion, while urinary Na+ excretion decreased to levels observed in control animals. Surprisingly, CA-SPAK mice had unaltered renal expression of Trpm6, encoding the Mg2+ -permeable channel TRPM6, or other magnesiotropic genes. In conclusion, CA-SPAK mice exhibit normomagnesemia, despite increased NCC activity and Na+ reabsorption. Thus, Mg2+ reabsorption is not coupled to increased thiazide-sensitive Na+ reabsorption, suggesting a similar process explains normomagnesemia in Gordon syndrome. Further research is required to unravel the molecular underpinnings of this phenomenon and the more pronounced Mg2+ excretion after prolonged HCTZ administration.
Collapse
Affiliation(s)
- Wouter H. van Megen
- Department of PhysiologyMaryland Kidney Discovery CenterUniversity of Maryland Medical SchoolBaltimoreMaryland
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud university medical centerNijmegenThe Netherlands
| | - Paul R. Grimm
- Department of PhysiologyMaryland Kidney Discovery CenterUniversity of Maryland Medical SchoolBaltimoreMaryland
| | - Paul A. Welling
- Department of PhysiologyMaryland Kidney Discovery CenterUniversity of Maryland Medical SchoolBaltimoreMaryland
| | - Jenny van der Wijst
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud university medical centerNijmegenThe Netherlands
| |
Collapse
|
24
|
Schäffers OJM, Hoenderop JGJ, Bindels RJM, de Baaij JHF. The rise and fall of novel renal magnesium transporters. Am J Physiol Renal Physiol 2018; 314:F1027-F1033. [DOI: 10.1152/ajprenal.00634.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Body Mg2+ balance is finely regulated in the distal convoluted tubule (DCT), where a tight interplay among transcellular reabsorption, mitochondrial exchange, and basolateral extrusion takes place. In the last decades, several research groups have aimed to identify the molecular players in these processes. A multitude of proteins have been proposed to function as Mg2+ transporter in eukaryotes based on phylogenetic analysis, differential gene expression, and overexpression studies. However, functional evidence for many of these proteins is lacking. The aim of this review is, therefore, to critically reconsider all putative Mg2+ transporters and put their presumed function in context of the renal handling of Mg2+. Sufficient experimental evidence exists to acknowledge transient receptor potential melastatin (TRPM) 6 and TRPM7, solute carrier family 41 (SLC41) A1 and SLC41A3, and mitochondrial RNA splicing 2 (MRS2) as Mg2+ transporters. TRPM6/7 facilitate Mg2+ influx, SLC41A1 mediates Mg2+ extrusion, and MRS2 and SLC41A3 are implicated in mitochondrial Mg2+ homeostasis. These proteins are highly expressed in the DCT. The function of cyclin M (CNNM) proteins is still under debate. For the other proposed Mg2+ transporters including Mg2+ transporter subtype 1 (MagT1), nonimprinted in Prader-Willi/Angelman syndrome (NIPA), membrane Mg2+ transport (MMgT), Huntingtin-interacting protein 14 (HIP14), and ATP13A4, functional evidence is limited, or functions alternative to Mg2+ transport have been suggested. Additional characterization of their Mg2+ transport proficiency should be provided before further claims about their role as Mg2+ transporter can be made.
Collapse
Affiliation(s)
- Olivier J. M. Schäffers
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
26
|
Phosphatase of regenerating liver maintains cellular magnesium homeostasis. Biochem J 2018; 475:1129-1139. [DOI: 10.1042/bcj20170756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Phosphatase of regenerating liver (PRL) is highly expressed in malignant cancers and promotes cancer progression. Recent studies have suggested its functional relationship with Mg2+, but the importance and molecular details of this relationship remain unknown. Here, we report that PRL expression is regulated by Mg2+ and PRL protects cells from apoptosis under Mg2+-depleted conditions. When cultured cells were subjected to Mg2+ depletion, endogenous PRL protein levels increased significantly. siRNA-mediated knockdown of endogenous PRL did not significantly affect cell proliferation under normal culture conditions, but it increased cell death after Mg2+ depletion. Imaging analyses with a fluorescent probe for Mg2+ showed that PRL knockdown severely reduced intracellular Mg2+ levels, indicating a role for PRL in maintaining intracellular Mg2+. We also examined the mechanism of augmented expression of PRL proteins and found that PRL mRNA transcription was stimulated by Mg2+ depletion. A series of analyses revealed the activation and the crucial importance of signal transducer and activator of transcription 1 in this process. Collectively, these results implicate PRL in maintaining cellular Mg2+ homeostasis.
Collapse
|
27
|
Funato Y, Furutani K, Kurachi Y, Miki H. Rebuttal from Yosuke Funato, Kazuharu Furutani, Yoshihisa Kurachi and Hiroaki Miki. J Physiol 2018; 596:751. [PMID: 29383723 PMCID: PMC5830423 DOI: 10.1113/jp275706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yosuke Funato
- Department of Cellular RegulationResearch Institute for Microbial Diseases, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Kazuharu Furutani
- Department of PharmacologyGraduate School of MedicineOsaka UniversitySuitaOsaka565‐0871Japan
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCA95616USA
| | - Yoshihisa Kurachi
- Department of PharmacologyGraduate School of MedicineOsaka UniversitySuitaOsaka565‐0871Japan
| | - Hiroaki Miki
- Department of Cellular RegulationResearch Institute for Microbial Diseases, Osaka UniversitySuitaOsaka565‐0871Japan
| |
Collapse
|
28
|
Affiliation(s)
- Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Arjona FJ, de Baaij JHF. CrossTalk opposing view: CNNM proteins are not Na + /Mg 2+ exchangers but Mg 2+ transport regulators playing a central role in transepithelial Mg 2+ (re)absorption. J Physiol 2018; 596:747-750. [PMID: 29383729 PMCID: PMC5830416 DOI: 10.1113/jp275249] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Abstract
Magnesium (Mg2+) is an essential mineral without known specific regulatory mechanisms. In ruminants, plasma Mg2+ concentration depends primarily on the balance between Mg2+ absorption and Mg2+ excretion. The primary site of Mg2+ absorption is the rumen, where Mg2+ is apically absorbed by both potential-dependent and potential-independent uptake mechanisms, reflecting involvement of ion channels and electroneutral transporters, respectively. Transport is energised in a secondary active manner by a basolateral Na+/Mg2+ exchanger. Ruminal transport of Mg2+ is significantly influenced by a variety of factors such as high K+ concentration, sudden increases of ammonia, pH, and the concentration of SCFA. Impaired Mg2+ absorption in the rumen is not compensated for by increased transport in the small or large intestine. While renal excretion can be adjusted to compensate precisely for any surplus in Mg2+ uptake, a shortage in dietary Mg2+ cannot be compensated for either via skeletal mobilisation of Mg2+ or via up-regulation of ruminal absorption. In such situations, hypomagnesaemia will lead to decrease of a Mg2+ in the cerebrospinal fluid and clinical manifestations of tetany. Improved knowledge concerning the factors governing Mg2+ homeostasis will allow reliable recommendations for an adequate Mg2+ intake and for the avoidance of possible disturbances. Future research should clarify the molecular identity of the suggested Mg2+ transport proteins and the regulatory mechanisms controlling renal Mg excretion as parameters influencing Mg2+ homeostasis.
Collapse
|
31
|
Magnesium Extravaganza: A Critical Compendium of Current Research into Cellular Mg 2+ Transporters Other than TRPM6/7. Rev Physiol Biochem Pharmacol 2018; 176:65-105. [PMID: 30406297 DOI: 10.1007/112_2018_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnesium research has boomed within the last 20 years. The real breakthrough came at the start of the new millennium with the discovery of a plethora of possible Mg homeostatic factors that, in particular, included putative Mg2+ transporters. Until that point, Mg research was limited to biochemical and physiological work, as no target molecular entities were known that could be used to explore the molecular biology of Mg homeostasis at the level of the cell, tissue, organ, or organism and to translate such knowledge into the field of clinical medicine and pharmacology. Because of the aforementioned, Mg2+ and Mg homeostasis, both of which had been heavily marginalized within the biomedical field in the twentieth century, have become overnight a focal point of many studies ranging from primary biomedical research to translational medicine.The amount of literature concerning cellular Mg2+ transport and cellular Mg homeostasis is increasing, together with a certain amount of confusion, especially about the function(s) of the newly discovered and, in the majority of instances, still only putative Mg2+ transporters/Mg2+ homeostatic factors. Newcomers to the field of Mg research will thus find it particularly difficult to orient themselves.Here, we briefly but critically summarize the status quo of the current understanding of the molecular entities behind cellular Mg2+ homeostasis in mammalian/human cells other than TRPM6/7 chanzymes, which have been universally accepted as being unspecific cation channel kinases allowing the flux of Mg2+ while constituting the major gateway for Mg2+ to enter the cell.
Collapse
|
32
|
Sponder G, Abdulhanan N, Fröhlich N, Mastrototaro L, Aschenbach JR, Röntgen M, Pilchova I, Cibulka M, Racay P, Kolisek M. Overexpression of Na +/Mg 2+ exchanger SLC41A1 attenuates pro-survival signaling. Oncotarget 2017; 9:5084-5104. [PMID: 29435164 PMCID: PMC5797035 DOI: 10.18632/oncotarget.23598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
The Na+/Mg2+ exchanger SLC41A1 (A1), a key component of intracellular Mg homeostasis (IMH), is the major cellular Mg2+ efflux system, and its overexpression decreases [Mg2+]intracellular. IMH plays an important role in the regulation of many cellular processes, including cellular signaling. However, whether the overexpression of A1 and the consequent drop of [Mg2+]i impact on intracellular signaling is unknown. To examine the latter, we utilized dynamic mass redistribution (DMR) assay, PathScan® RTK signaling antibody (PRSA) array, confirmatory Western blot (WB) analyses of phosphorylation of kinases selected by PRSA, and mag-fura 2-assisted fast filter spectrometry (FFS). We demonstrate here that the overexpression of A1 quantitatively and qualitatively changes the DMR signal evoked by the application of PAR-1-selective activating peptide and/or by changing [Mg2+]extracellular in HEK293 cells. PRSA profiling of the phosphorylation of important signaling nodes followed by confirmatory WB has revealed that, in HEK293 cells, A1 overexpression significantly attenuates the phosphorylation of Akt/PKB on Thr308 and/or Ser473 and of Erk1/2 on Thr202/Tyr204 in the presence of 0 or 1 mM (physiological) Mg2+ in the bath solution. The latter is also true for SH-SY5Y and HeLa cells. Overexpression of A1 in HEK293 cells significantly lowers [Mg2+]i in the presence of [Mg2+]e = 0 or 1 mM. This correlates with the observed attenuation of prosurvival Akt/PKB - Erk1/2 signaling in these cells. Thus, A1 expression status and [Mg2+]e (and consequently also [Mg2+]i) modulate the complex physiological fingerprint of the cell and influence the activity of kinases involved in anti-apoptotic and, hence, pro-survival events in cells.
Collapse
Affiliation(s)
- Gerhard Sponder
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Nasrin Abdulhanan
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Nadine Fröhlich
- PerkinElmer Life and Analytical Sciences GmbH, Rodgau, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany
| | - Monika Röntgen
- Leibnitz Institute for Farm Animal Biology, Department of Muscle and Growth Physiology, Dummerstorf, Germany
| | - Ivana Pilchova
- Biomedical Center Martin, Division of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Cibulka
- Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Racay
- Biomedical Center Martin, Division of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.,Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kolisek
- Institute of Veterinary-Physiology, Free University of Berlin, Berlin, Germany.,Biomedical Center Martin, Division of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
33
|
Paparelli A, Iwata K, Wakuda T, Iyegbe C, Murray RM, Takei N. Perinatal Asphyxia in Rat Alters Expression of Novel Schizophrenia Risk Genes. Front Mol Neurosci 2017; 10:341. [PMID: 29163023 PMCID: PMC5663725 DOI: 10.3389/fnmol.2017.00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies suggest that obstetric complications, particularly those related to hypoxia during labor and delivery, are a risk factor for development of schizophrenia. The impact of perinatal asphyxia on postnatal life has been studied in a rodent model of global hypoxia, which is accompanied by cesarean section birth. This asphyxia model shows several behavioral, pharmacological, neurochemical, and neuroanatomical abnormalities in adulthood that have relevance to schizophrenia. Further, it is suggested that schizophrenia has a strong genetic component, and indeed novel candidate genes were recently identified by a genome-wide association study. Here, we examined alteration in the novel schizophrenia risk genes, CNNM2, CSMD1, and MMP16 in the brains of rats undergoing cesarean section with or without global hypoxia. The brain regions studied were the prefrontal cortex, striatum, and hippocampus, which are all relevant to schizophrenia. Risk gene expression was measured at three time periods: neonatal, adolescence, and adulthood. We also performed an in vitro analysis to determine involvement of these genes in CNS maturation during differentiation of human neuronal and glial cell lines. Cnnm2 expression was altered in the brains of asphyxia model rats. However, Csmd1 and Mmp16 showed altered expression by exposure to cesarean section only. These findings suggest that altered expression of these risk genes via asphyxia and cesarean section may be associated, albeit through distinct pathways, with the pathobiology of schizophrenia.
Collapse
Affiliation(s)
- Alessandra Paparelli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Department of Biology, University of Padova, Padova, Italy
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Conrad Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Nori Takei
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom.,Division of Neuropsychological Development and Health Sciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Hamamatsu, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Magnesium (Mg) imbalances are frequently overlooked. Hypermagnesemia usually occurs in preeclamptic women after Mg therapy or in end-stage renal disease patients, whereas hypomagnesemia is more common with a prevalence of up to 15% in the general population. Increasing evidence points toward a role for mild-to-moderate chronic hypomagnesemia in the pathogenesis of hypertension, type 2 diabetes mellitus, and metabolic syndrome. RECENT FINDINGS The kidneys are the major regulator of total body Mg homeostasis. Over the last decade, the identification of the responsible genes in rare genetic disorders has enhanced our understanding of how the kidney handles Mg. The different genetic disorders and medications contributing to abnormal Mg homeostasis are reviewed. SUMMARY As dysfunctional Mg homeostasis contributes to the development of many common human disorders, serum Mg deserves closer monitoring. Hypomagnesemic patients may be asymptomatic or may have mild symptoms. In severe hypomagnesemia, patients may present with neurological symptoms such as seizures, spasms, or cramps. Renal symptoms include nephrocalcinosis and impaired renal function. Most conditions affect tubular Mg reabsorption by disturbing the lumen-positive potential in the thick ascending limb or the negative membrane potential in the distal convoluted tubule.
Collapse
|
35
|
Giménez-Mascarell P, Oyenarte I, Hardy S, Breiderhoff T, Stuiver M, Kostantin E, Diercks T, Pey AL, Ereño-Orbea J, Martínez-Chantar ML, Khalaf-Nazzal R, Claverie-Martin F, Müller D, Tremblay ML, Martínez-Cruz LA. Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2. J Biol Chem 2016; 292:786-801. [PMID: 27899452 DOI: 10.1074/jbc.m116.759944] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Serge Hardy
- the Rosalind and Morris Goodman Cancer Research Centre
| | - Tilman Breiderhoff
- the Department of Pediatric Nephrology, Charité Universitäts Medizin, Berlin, 13353 Berlin, Germany.,the Berlin Institute of Health, Berlin, Germany
| | - Marchel Stuiver
- the In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Elie Kostantin
- the Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry, and
| | - Tammo Diercks
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Angel L Pey
- the Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - June Ereño-Orbea
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - María Luz Martínez-Chantar
- the Metabolomics Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Reham Khalaf-Nazzal
- the Department of Biomedical Sciences, An-Najah National University, P. O. Box 7, Nablus, Palestinian Territory, and
| | - Felix Claverie-Martin
- the Research Unit, Nuestra Señora de Candelaria University Hospital, 38010 Santa Cruz de Tenerife, Spain
| | - Dominik Müller
- the Department of Pediatric Nephrology, Charité Universitäts Medizin, Berlin, 13353 Berlin, Germany,
| | - Michel L Tremblay
- the Rosalind and Morris Goodman Cancer Research Centre, .,Department of Biochemistry, and.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Luis Alfonso Martínez-Cruz
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain,
| |
Collapse
|