1
|
Bushi A, Ma Y, Adu-Amankwaah J, Wang R, Cui F, Xiao R, Zhao J, Yuan J, Tan R. G protein-coupled estrogen receptor biased signaling in health and disease. Pharmacol Ther 2025; 269:108822. [PMID: 39978643 DOI: 10.1016/j.pharmthera.2025.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
G protein-coupled estrogen receptor (GPER) is now recognized for its pivotal role in cellular signaling, influencing diverse physiological processes and disease states. Unlike classical estrogen receptors, GPER exhibits biased signaling, wherein ligand binding triggers selective pathways over others, significantly impacting cellular responses. This review explores the nuanced mechanisms of biased signaling mediated by GPER, underscoring its relevance in cardiovascular health, neurological function, immune modulation, and oncogenic processes. Despite its critical implications, biased signaling through GPER remains underexplored compared to traditional signaling paradigms. We explore recent progress in understanding GPER signaling specificity and its potential therapeutic implications across various diseases. Future research directions aim to uncover the molecular basis of biased signaling, develop selective ligands, and translate these insights into personalized therapeutic approaches. Exploiting the therapeutic potential of GPER biased signaling represents a promising frontier in precision medicine, offering innovative strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Aisha Bushi
- School international education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yixuan Ma
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rong Wang
- The second clinical college, China Medical University, Shenyang, Liaoning 110122, China
| | - Fen Cui
- Research Institution of Behavioral Medicine Education, Jining Medical University, Jining 272067, China
| | - Rui Xiao
- Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China; Department of Pathology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Zhang RG, Niu Y, Pan KW, Pang H, Chen CL, Yip CY, Ko WH. β 2-Adrenoceptor Activation Stimulates IL-6 Production via PKA, ERK1/2, Src, and Beta-Arrestin2 Signaling Pathways in Human Bronchial Epithelia. Lung 2021; 199:619-627. [PMID: 34725715 PMCID: PMC8626360 DOI: 10.1007/s00408-021-00484-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE β2-Adrenoceptor agonists are widely used to treat asthma because of their bronchial-dilation effects. We previously reported that isoprenaline, via the apical and basolateral β2-adrenoceptor, induced Cl- secretion by activating cyclic AMP (cAMP)-dependent pathways in human bronchial epithelia. Despite these results, whether and how the β2-adrenoceptor-mediated cAMP-dependent pathway contributes to pro-inflammatory cytokine release in human bronchial epithelia remains poorly understood. METHODS We investigated β2-adrenoceptor-mediated signaling pathways involved in the production of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, in 16HBE14o- human bronchial epithelia. The effects of isoprenaline or formoterol were assessed in the presence of protein kinase A (PKA), exchange protein directly activated by cAMP (EPAC), Src, and extracellular signal-regulated protein kinase (ERK)1/2 inhibitors. The involvement of β-arrestin2 was examined using siRNA knockdown. RESULTS Isoprenaline and formoterol (both β2 agonists) induced IL-6, but not IL-8, release, which could be inhibited by ICI 118,551 (β2 antagonist). The PKA-specific inhibitor, H89, partially inhibited IL-6 release. Another intracellular cAMP receptor, EPAC, was not involved in IL-6 release. Isoprenaline-mediated IL-6 secretion was attenuated by dasatinib, a Src inhibitor, and PD98059, an ERK1/2 inhibitor. Isoprenaline treatment also led to ERK1/2 phosphorylation. In addition, knockdown of β-arrestin2 by siRNA specifically suppressed cytokine release when a high concentration of isoprenaline (1 mM) was used. CONCLUSION Our results suggest that activation of the β2-adrenoceptor in 16HBE14o- cells stimulated the PKA/Src/ERK1/2 and/or β-arrestin2 signaling pathways, leading to IL-6 release. Therefore, our data reveal that β2-adrenoceptor signaling plays a role in the immune regulation of human airway epithelia.
Collapse
Affiliation(s)
- Rui-Gang Zhang
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Ya Niu
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Ke-Wu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, N.T., China
| | - Hao Pang
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Chun-Ling Chen
- Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Chung-Yin Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, N.T., China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, N.T., China.
| |
Collapse
|
3
|
Yang S, Yin Z, Zhu G. A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. Eur J Pharmacol 2021; 908:174363. [PMID: 34297966 DOI: 10.1016/j.ejphar.2021.174363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Aging-related diseases, especially vascular and neurological disorders cause huge economic burden. How to delay vascular and neurological aging is one of the insurmountable questions. G protein-coupled estrogen receptor 1 (GPER) has been extensively investigated in recent years due to its multiple biological responses. In this review, the function of GPER in aging-related diseases represented by vascular diseases, and neurological disorders were discussed. Apart from that, activation of GPER was also found to renovate the aging brain characterized by memory decline, but in a manner different from another two nuclear estrogen receptors estrogen receptor (ER)α and ERβ. This salutary effect would be better clarified from the aspects of synaptic inputs and transmission. Furthermore, we carefully described molecular mechanisms underpinning GPER-mediated effects. This review would update our understanding of GPER in the aging process. Targeting GPER may represent a promising strategy in the aging-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhe Yin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
4
|
Raherison C, Hamzaoui A, Nocent-Ejnaini C, Essari LA, Ouksel H, Zysman M, Prudhomme A. [Woman's asthma throughout life: Towards a personalized management?]. Rev Mal Respir 2020; 37:144-160. [PMID: 32057504 DOI: 10.1016/j.rmr.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022]
Abstract
In a woman's life, asthma can affect her in a variety of ways, with the onset of premenstrual asthma currently under-diagnosed. It is estimated that about 20% of women with asthma have premenstrual asthma, which is more common in patients with severe asthma. Women with asthma are at high risk of exacerbations and of severe asthma. Asthma is the most common chronic disease during pregnancy with potential maternal and foetal complications. Asthma medications are safe for the foetus and it is essential to continue pre-existing treatment and adapt it to the progress of asthma during the pregnancy. Sex steroids modulate the structure and function of bronchial and immune cells. Understanding their role in asthma pathogenesis is complicated by the ambivalent effects of bronchodilating and pro-inflammatory oestrogens as well as the diversity of response to their association with progesterone. Menopausal asthma is a clinical entity and is part of one of the phenotypes of severe non-allergic and low steroid-sensitive asthma. Targeted assessment of the domestic and professional environment allows optimization of asthma management.
Collapse
Affiliation(s)
- C Raherison
- Service des maladies respiratoires, pôle cardiothoracique, INSERM U1219, université de Bordeaux, CHU Bordeaux, 146, rue Léo-Saignat, 33604 Bordeaux, France.
| | - A Hamzaoui
- Pavillon B, unité de recherche UR12 SP15, hôpital Abderrahmen Mami, faculté de médecine, université de Tunis El Manar, Ariana, Tunisie
| | | | - L-A Essari
- Département de pneumologie, CHRU de Nancy, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - H Ouksel
- Département de pneumologie, CHU d'Angers, Angers, France
| | - M Zysman
- UMR_S955, université Paris-Est Créteil (UPEC), 94000 Créteil, France; Inserm, U955, Team 4, 94000 Créteil, France
| | - A Prudhomme
- Service de pneumologie, CHG Tarbes, Tarbes, France
| | | |
Collapse
|
5
|
Hao Y, Wang L, Chen H, Hill WG, Robson SC, Zeidel ML, Yu W. Targetable purinergic receptors P2Y12 and A2b antagonistically regulate bladder function. JCI Insight 2019; 4:122112. [PMID: 31434806 DOI: 10.1172/jci.insight.122112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormalities in purine availability or purinergic receptor density are commonly seen in patients with lower urinary tract symptoms (LUTS), but the underlying mechanisms relating altered receptor function to LUTS are unknown. Here we provide extensive evidence for the reciprocal interplay of multiple receptors responding to ATP, ADP (adenosine diphosphate), and adenosine, agonists that regulate bladder function significantly. ADP stimulated P2Y12 receptors, causing bladder smooth muscle (BSM) contraction, whereas adenosine signaling through potentially newly defined A2b receptors, actively inhibited BSM purinergic contractility. The modulation of adenylyl cyclase-cAMP signaling via A2b and P2Y12 interaction actively regulated bladder contractility by modulating intracellular calcium levels. KO mice lacking the receptors display diametrically opposed bladder phenotypes, with P2Y12-KO mice exhibiting an underactive bladder (UAB) phenotype with increased bladder capacity and reduced voiding frequency, whereas A2b-KO mice have an overactive bladder (OAB), with decreased capacity and increased voiding frequency. The opposing phenotypes in P2Y12-KO and A2b-KO mice not only resulted from dysregulated BSM contractility, but also from abnormal BSM cell growth. Finally, we demonstrate that i.p. administration of drugs targeting P2Y12 or A2b receptor rescues these abnormal phenotypes in both KO mice. These findings strongly indicate that P2Y12 and A2b receptors are attractive therapeutic targets for human patients with LUTS.
Collapse
Affiliation(s)
- Yuan Hao
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Lu Wang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Chongqing University, Chongqing, China
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Pan WL, Wang Y, Hao Y, Wong JH, Chan WC, Wan DCC, Ng TB. Overexpression of CXCR4 synergizes with LL-37 in the metastasis of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3837-3846. [DOI: 10.1016/j.bbadis.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/20/2018] [Accepted: 09/08/2018] [Indexed: 01/14/2023]
|
7
|
Kotula-Balak M, Milon A, Pawlicki P, Opydo-Chanek M, Pacwa A, Lesniak K, Sekula M, Zarzycka M, Bubka M, Tworzydlo W, Bilinska B, Hejmej A. Insights into the role of estrogen-related receptors α, β and γ in tumor Leydig cells. Tissue Cell 2018; 52:78-91. [DOI: 10.1016/j.tice.2018.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/05/2023]
|