1
|
Li X, Dai X. Molecular Characterization of Anion Exchanger 2 in Litopenaeus vannamei and Its Role in Nitrite Stress. Int J Mol Sci 2025; 26:964. [PMID: 39940733 PMCID: PMC11817657 DOI: 10.3390/ijms26030964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 02/16/2025] Open
Abstract
Anion exchanger 2 (AE2) mediates the Cl-/HCO3- transmembrane exchange process and regulates intracellular pH homeostasis. In this study, the AE2 gene (GenBank: PQ073349) was cloned and characterized from Litopenaeus vannamei using the rapid amplification of cDNA ends (RACE) technique. Employing bioinformatics, real-time fluorescence quantitative PCR, and RNA interference, we explored the gene's sequence characteristics, tissue distribution, and the effects of nitrite on shrimp survival, physiology, and tissue damage following gene silencing. The results showed that AE2 cDNA was 5134 bp in length, encoding 1293 amino acids, which includes both the Band3 and HCO3- structural domains. AE2 was expressed in all tissues, with the highest expression in muscle. After silencing AE2, shrimp survival increased and hemolymph nitrite levels decreased. Notably, the oxidative stress enzyme system was not severely affected, and gill tissue damage was reduced. In addition, the expression level of Na+/K+/2Cl- cotransporter 1 (NKCC1) was significantly reduced (p < 0.05). These findings suggest that AE2 and NKCC1 are jointly involved in regulating the physiological process of nitrite entry into the shrimp body through gill tissue. Overall, this study provides a crucial experimental foundation for addressing the toxicity concerns associated with nitrite.
Collapse
Affiliation(s)
- Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
3
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
4
|
Rodenburg LW, Delpiano L, Railean V, Centeio R, Pinto MC, Smits SMA, van der Windt IS, van Hugten CFJ, van Beuningen SFB, Rodenburg RNP, van der Ent CK, Amaral MD, Kunzelmann K, Gray MA, Beekman JM, Amatngalim GD. Drug Repurposing for Cystic Fibrosis: Identification of Drugs That Induce CFTR-Independent Fluid Secretion in Nasal Organoids. Int J Mol Sci 2022; 23:12657. [PMID: 36293514 PMCID: PMC9603984 DOI: 10.3390/ijms232012657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion. From a ~1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including β2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in the Ussing chamber, and fluid secretion was not affected by TMEM16A, as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for medium-scale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.
Collapse
Affiliation(s)
- Lisa W. Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Violeta Railean
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Madalena C. Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Shannon M. A. Smits
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Isabelle S. van der Windt
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Casper F. J. van Hugten
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sam F. B. van Beuningen
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Remco N. P. Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
| | - Margarida D. Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael A. Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Gimano D. Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
5
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
6
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
7
|
Montenarh M, Götz C. Protein kinase CK2 and ion channels (Review). Biomed Rep 2020; 13:55. [PMID: 33082952 PMCID: PMC7560519 DOI: 10.3892/br.2020.1362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non-catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| |
Collapse
|
8
|
Pinto MC, Schreiber R, Lerias J, Ousingsawat J, Duarte A, Amaral M, Kunzelmann K. Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells 2020; 9:cells9051138. [PMID: 32380794 PMCID: PMC7291285 DOI: 10.3390/cells9051138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly ubiquitous and conserved serine/threonine kinase that forms a tetramer consisting of a catalytic subunit (CK2α) and a regulatory subunit (CK2β). Despite being ubiquitous, CK2 is commonly found at higher expression levels in cancer cells, where it inhibits apoptosis, and supports cell migration and proliferation. The Ca2+-activated chloride channel TMEM16A shows similar effects in cancer cells: TMEM16A increases cell proliferation and migration and is highly expressed in squamous cell carcinoma of the head and neck (HNSCC) as well as other malignant tumors. A microscopy-based high-throughput screening was performed to identify proteins that regulate TMEM16A. Within this screen, CK2 was found to be required for proper membrane expression of TMEM16A. small interfering (si) RNA-knockdown of CK2 reduced plasma membrane expression of TMEM16A and inhibited TMEM16A whole cell currents in (cystic fibrosis bronchial epithelial) CFBE airway epithelial cells and in the head and neck cancer cell lines Cal33 and BHY. Inhibitors of CK2, such as TBB and the preclinical compound CX4549 (silmitasertib), also blocked membrane expression of TMEM16A and Ca2+-activated whole cell currents. siRNA-knockout of CK2 and its pharmacological inhibition, as well as knockdown or inhibition of TMEM16A by either niclosamide or Ani9, attenuated cell proliferation. Simultaneous inhibition of CK2 and TMEM16A strongly potentiated inhibition of cell proliferation. Although membrane expression of TMEM16A is reduced by inhibition of CK2, our data suggest that the antiproliferative effects by inhibition of CK2 are mostly independent of TMEM16A. Simultaneous inhibition of TMEM16A by niclosamide and inhibition of CK2 by silmitasertib was additive with respect to blocking cell proliferation, while cytotoxicity was reduced when compared to solely blockade of CK2. Therefore, parallel blockade TMEM16A by niclosamide may assist with anticancer therapy by silmitasertib.
Collapse
Affiliation(s)
- Madalena C. Pinto
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
| | - Joana Lerias
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
| | - Aires Duarte
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Margarida Amaral
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
- Correspondence: ; Tel.: +49-941-943-4302; Fax: +49-941-943-4315
| |
Collapse
|
9
|
Jobst-Schwan T, Klämbt V, Tarsio M, Heneghan JF, Majmundar AJ, Shril S, Buerger F, Ottlewski I, Shmukler BE, Topaloglu R, Hashmi S, Hafeez F, Emma F, Greco M, Laube GF, Fathy HM, Pohl M, Gellermann J, Milosevic D, Baum MA, Mane S, Lifton RP, Kane PM, Alper SL, Hildebrandt F. Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney Int 2019; 97:567-579. [PMID: 31959358 DOI: 10.1016/j.kint.2019.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Distal renal tubular acidosis is a rare renal tubular disorder characterized by hyperchloremic metabolic acidosis and impaired urinary acidification. Mutations in three genes (ATP6V0A4, ATP6V1B1 and SLC4A1) constitute a monogenic causation in 58-70% of familial cases of distal renal tubular acidosis. Recently, mutations in FOXI1 have been identified as an additional cause. Therefore, we hypothesized that further monogenic causes of distal renal tubular acidosis remain to be discovered. Panel sequencing and/or whole exome sequencing was performed in a cohort of 17 families with 19 affected individuals with pediatric onset distal renal tubular acidosis. A causative mutation was detected in one of the three "classical" known distal renal tubular acidosis genes in 10 of 17 families. The seven unsolved families were then subjected to candidate whole exome sequencing analysis. Potential disease causing mutations in three genes were detected: ATP6V1C2, which encodes another kidney specific subunit of the V-type proton ATPase (1 family); WDR72 (2 families), previously implicated in V-ATPase trafficking in cells; and SLC4A2 (1 family), a paralog of the known distal renal tubular acidosis gene SLC4A1. Two of these mutations were assessed for deleteriousness through functional studies. Yeast growth assays for ATP6V1C2 revealed loss-of-function for the patient mutation, strongly supporting ATP6V1C2 as a novel distal renal tubular acidosis gene. Thus, we provided a molecular diagnosis in a known distal renal tubular acidosis gene in 10 of 17 families (59%) with this disease, identified mutations in ATP6V1C2 as a novel human candidate gene, and provided further evidence for phenotypic expansion in WDR72 mutations from amelogenesis imperfecta to distal renal tubular acidosis.
Collapse
Affiliation(s)
- Tilman Jobst-Schwan
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Verena Klämbt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - John F Heneghan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar J Majmundar
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Ottlewski
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris E Shmukler
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Seema Hashmi
- Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Farkhanda Hafeez
- Department of Pediatric Nephrology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marcella Greco
- Department of Pediatric Subspecialties, Division of Nephrology, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Guido F Laube
- Nephrology Unit, University Children's Hospital, Zürich, Switzerland
| | - Hanan M Fathy
- Pediatric Nephrology Unit, Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jutta Gellermann
- Department of Pediatrics, University Children's Hospital of Berlin, University Hospital Berlin Charité, Berlin, Germany
| | - Danko Milosevic
- University of Zagreb School of Medicine, Zagreb University Hospital Center, Zagreb, Croatia
| | - Michelle A Baum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
D'Amore C, Salizzato V, Borgo C, Cesaro L, Pinna LA, Salvi M. A Journey through the Cytoskeleton with Protein Kinase CK2. Curr Protein Pept Sci 2019; 20:547-562. [PMID: 30659536 DOI: 10.2174/1389203720666190119124846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
Substrate pleiotropicity, a very acidic phosphorylation consensus sequence, and an apparent uncontrolled activity, are the main features of CK2, a Ser/Thr protein kinase that is required for a plethora of cell functions. Not surprisingly, CK2 appears to affect cytoskeletal structures and correlated functions such as cell shape, mechanical integrity, cell movement and division. This review outlines our current knowledge of how CK2 regulates cytoskeletal structures, and discusses involved pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Valentina Salizzato
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,CNR Institute of Neurosciences, Via U. Bassi 58/B, Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,CNR Institute of Neurosciences, Via U. Bassi 58/B, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| |
Collapse
|