1
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Senthilkumaran M, Koch C, Herselman MF, Bobrovskaya L. Role of the Adrenal Medulla in Hypoglycaemia-Associated Autonomic Failure-A Diabetic Perspective. Metabolites 2024; 14:100. [PMID: 38392992 PMCID: PMC10890365 DOI: 10.3390/metabo14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis. While the effects of recurrent hypoglycaemia on catecholamine synthetic enzymes remain inconsistent, long-term changes in TH protein expression suggest species-specific responses. Adrenomedullary peptides such as neuropeptide Y (NPY), galanin, and proenkephalin exhibit altered gene and protein expression in response to hypoglycaemia, suggesting a potential role in the modulation of catecholamine secretion. Of note is NPY, since its antagonism has been shown to prevent reductions in TH protein expression. This review highlights the need for further investigation into the molecular mechanisms involved in the adrenal medullary response to hypoglycaemia. Despite advancements in our understanding of HAAF in non-diabetic rodents, a reliable diabetic rodent model of HAAF remains a challenge.
Collapse
Affiliation(s)
- Manjula Senthilkumaran
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Coen Koch
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Maneu V, Borges R, Gandía L, García AG. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflugers Arch 2023; 475:667-690. [PMID: 36884064 PMCID: PMC10185644 DOI: 10.1007/s00424-023-02793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 03/09/2023]
Abstract
This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.
Collapse
Affiliation(s)
- Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G. García
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Houy S, Martins JS, Mohrmann R, Sørensen JB. Measurements of Exocytosis by Capacitance Recordings and Calcium Uncaging in Mouse Adrenal Chromaffin Cells. Methods Mol Biol 2021; 2233:233-251. [PMID: 33222139 DOI: 10.1007/978-1-0716-1044-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fusion of vesicles with the plasma membrane and liberation of their contents is a multistep process involving several proteins. Correctly assigning the role of specific proteins and reactions in this cascade requires a measurement method with high temporal resolution. Patch-clamp recordings of cell membrane capacitance in combination with calcium measurements, calcium uncaging, and carbon-fiber amperometry allow for the accurate determination of vesicle pool sizes, their fusion kinetics, and their secreted oxidizable content. Here, we will describe this method in a model system for neurosecretion, the adrenal chromaffin cells, which secrete adrenaline.
Collapse
Affiliation(s)
- Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Joana S Martins
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Ralf Mohrmann
- Institute for Physiology, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
5
|
Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 2020; 472:775-789. [PMID: 32621084 DOI: 10.1007/s00424-020-02430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Collapse
Affiliation(s)
- Andrea Marcantoni
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Calorio
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Giuseppe Chiantia
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
6
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
7
|
Calorio C, Gavello D, Guarina L, Salio C, Sassoè-Pognetto M, Riganti C, Bianchi FT, Hofer NT, Tuluc P, Obermair GJ, Defilippi P, Balzac F, Turco E, Bett GC, Rasmusson RL, Carbone E. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers. J Physiol 2019; 597:1705-1733. [PMID: 30629744 DOI: 10.1113/jp277487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Tymothy syndrome (TS) is a multisystem disorder featuring cardiac arrhythmias, autism and adrenal gland dysfunction that originates from a de novo point mutation in the gene encoding the Cav1.2 (CACNA1C) L-type channel. To study the role of Cav1.2 channel signals in autism, the autistic TS2-neo mouse has been generated bearing the G406R point-mutation associated with TS type-2. Using heterozygous TS2-neo mice, we report that the G406R mutation reduces the rate of inactivation and shifts leftward the activation and inactivation of L-type channels, causing marked increase of resting Ca2+ influx ('window' Ca2+ current). The increased 'window current' causes marked reduction of NaV channel density, switches normal tonic firing to abnormal burst firing, reduces mitochondrial metabolism, induces cell swelling and decreases catecholamine release. Overnight incubations with nifedipine rescue NaV channel density, normal firing and the quantity of catecholamine released. We provide evidence that chromaffin cell malfunction derives from altered Cav1.2 channel gating. ABSTRACT L-type voltage-gated calcium (Cav1) channels have a key role in long-term synaptic plasticity, sensory transduction, muscle contraction and hormone release. A point mutation in the gene encoding Cav1.2 (CACNA1C) causes Tymothy syndrome (TS), a multisystem disorder featuring cardiac arrhythmias, autism spectrum disorder (ASD) and adrenal gland dysfunction. In the more severe type-2 form (TS2), the missense mutation G406R is on exon 8 coding for the IS6-helix of the Cav1.2 channel. The mutation causes reduced inactivation and induces autism. How this occurs and how Cav1.2 gating-changes alter cell excitability, neuronal firing and hormone release on a molecular basis is still largely unknown. Here, using the TS2-neo mouse model of TS we show that the G406R mutation altered excitability and reduced secretory activity in adrenal chromaffin cells (CCs). Specifically, the TS2 mutation reduced the rate of voltage-dependent inactivation and shifted leftward the activation and steady-state inactivation of L-type channels. This markedly increased the resting 'window' Ca2+ current that caused an increased percentage of CCs undergoing abnormal action potential (AP) burst firing, cell swelling, reduced mitochondrial metabolism and decreased catecholamine release. The increased 'window' Ca2+ current caused also decreased NaV channel density and increased steady-state inactivation, which contributed to the increased abnormal burst firing. Overnight incubation with the L-type channel blocker nifedipine rescued the normal AP firing of CCs, the density of functioning NaV channels and their steady-state inactivation. We provide evidence that CC malfunction derives from the altered Cav1.2 channel gating and that dihydropyridines are potential therapeutics for ASD.
Collapse
Affiliation(s)
- Chiara Calorio
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Daniela Gavello
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Department of Physiology & Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Glenna C Bett
- Department of Physiology & Biophysics, State University of New York, Buffalo, NY, USA
| | - Randall L Rasmusson
- Department of Physiology & Biophysics, State University of New York, Buffalo, NY, USA
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| |
Collapse
|
8
|
|
9
|
Sahu BS, Mahata S, Bandyopadhyay K, Mahata M, Avolio E, Pasqua T, Sahu C, Bandyopadhyay GK, Bartolomucci A, Webster NJG, Van Den Bogaart G, Fischer-Colbrie R, Corti A, Eiden LE, Mahata SK. Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell Tissue Res 2018; 376:51-70. [PMID: 30467710 DOI: 10.1007/s00441-018-2956-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 μM) and PACAP (0.1 μM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 μM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.
Collapse
Affiliation(s)
- Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| | - Sumana Mahata
- California Institute of Technology, Pasadena, CA, USA
| | - Keya Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Manjula Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | | | | | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gautam K Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|