1
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|
3
|
Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel) 2022; 11:antiox11091788. [PMID: 36139861 PMCID: PMC9495975 DOI: 10.3390/antiox11091788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide has been recently identified as the third biological gasotransmitter, along with the more well studied nitric oxide (NO) and carbon monoxide (CO). Intensive studies on its potential as a therapeutic agent for cardiovascular, inflammatory, infectious and neuropathological diseases have been undertaken. Here we review the possible direct targets of H2S in mammals. H2S directly interacts with reactive oxygen/nitrogen species and is involved in redox signaling. H2S also reacts with hemeproteins and modulates metal-containing complexes. Once being oxidized, H2S can persulfidate proteins by adding -SSH to the amino acid cysteine. These direct modifications by H2S have significant impact on cell structure and many cellular functions, such as tight junctions, autophagy, apoptosis, vesicle trafficking, cell signaling, epigenetics and inflammasomes. Therefore, we conclude that H2S is involved in many important cellular and physiological processes. Compounds that donate H2S to biological systems can be developed as therapeutics for different diseases.
Collapse
|
4
|
Pharmacological evidence that potassium channels mediate hydrogen sulfide-induced inhibition of the vasopressor sympathetic outflow in pithed rats. Eur J Pharmacol 2022; 931:175160. [DOI: 10.1016/j.ejphar.2022.175160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/26/2023]
|
5
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
6
|
Sousa FBM, Pacheco G, Oliveira AP, Nicolau LAD, Lopes ALF, Ferreira-Fernandes H, Pinto GR, Medeiros JVR. Mechanism of preservation of the intestinal mucosa architecture and NF-κB/PGE2 reduction by hydrogen sulfide on cholera toxin-induced diarrhea in mice. Life Sci 2021; 284:119869. [PMID: 34358552 DOI: 10.1016/j.lfs.2021.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS Investigate the involvement of Hydrogen sulfide (H2S) in inflammatory parameters and intestinal morphology caused by cholera toxin (CT) in mice. MAIN METHODS Mice were subjected to the procedure of inducing diarrhea by CT in the isolated intestinal loop model. The intestinal loops were inoculated with H2S donor molecules (NaHS and GYY 4137) or saline and CT. To study the role of EP2 and EP4 prostaglandin E2 (PGE2) receptors in the H2S antisecretory effect, PAG (DL-propargylglycine - inhibitor of cystathionine-γ-lyase (CSE)), PF-04418948 (EP2 antagonist) and ONO-AE3-208 (EP4 antagonist) were used. The intestinal loops were evaluated for intestinal secretion, relation of the depth of villi and intestinal crypts, and real-time PCR for the mRNA of the CXCL2, IL-6, NOS-2, IL-17, NF-κB1, NF-κBIA, SLC6A4 and IFN-γ genes. KEY FINDINGS H2S restored the villus/crypt depth ratio caused by CT. NaHS and GYY 4137 increased the expression of NF-κB1 and for the NF-κBIA gene, only GYY 4137 increased the expression of this gene. The increased expression of NF-κB inhibitors, NF-κB1 and NF-κBIA by H2S indicates a possible decrease in NF-κB activity. The pretreatment with PAG reversed the protective effect of PF-04418948 and ONO-AE3-208, indicating that H2S probably decreases PGE2 because in the presence of antagonists of this pathway, PAG promotes intestinal secretion. SIGNIFICANCE Our results point to a protective activity of H2S against CT for promoting a protection of villus and crypt intestine morphology and also that its mechanism occurs at least in part due to decreasing the activity of NF-κB and PGE2.
Collapse
Affiliation(s)
- Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - André L F Lopes
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Hygor Ferreira-Fernandes
- Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Giovanny R Pinto
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
7
|
Peng SY, Wu X, Lu T, Cui G, Chen G. Research progress of hydrogen sulfide in Alzheimer's disease from laboratory to hospital: a narrative review. Med Gas Res 2021; 10:125-129. [PMID: 33004710 PMCID: PMC8086622 DOI: 10.4103/2045-9912.296043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disease that mainly occurs in old age and early stages. Its main manifestations are memory impairment, aphasia, apraxia, loss of identity, abstract thinking and impairment of computing power, personality and behavior changes, etc. At present, the treatment of Alzheimer's disease only stays on reducing the disease and delaying the development, which is also a difficult problem to overcome in clinical practice. Hydrogen sulfide, as a third gaseous signal molecule after carbon monoxide and nitrogen monoxide, has become very popular in recent years. It shows very promising prospects in the Alzheimer's disease model. It can protect the nerve function and prevent the progress of the disease by affecting the amyloid precursor protein metabolism, anti-apoptosis, anti-inflammatory, and antioxidant pathways. Therefore, this article summarizes the relevant basic and clinical research of hydrogen sulfide in Alzheimer's disease, and discusses its progress and findings and mechanism characteristics.
Collapse
Affiliation(s)
- Song-Yang Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Nii T, Eguchi R, Yamaguchi S, Otsuguro KI. Hydrogen sulfide induces Ca 2+ release from the endoplasmic reticulum and suppresses ATP-induced Ca 2+ signaling in rat spinal cord astrocytes. Eur J Pharmacol 2021; 891:173684. [PMID: 33129788 DOI: 10.1016/j.ejphar.2020.173684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Hydrogen sulfide (H2S) has a variety of physiological functions. H2S reportedly increases intracellular Ca2+ concentration ([Ca2+]i) in astrocytes. However, the precise mechanism and functional role of this increase are not known. Here, we examined the effects of H2S on [Ca2+]i in astrocytes from the rat spinal cord and whether H2S affects ATP-induced Ca2+ signaling, which is known to be involved in synaptic function. Na2S (150 μM), an H2S donor, produced a nontoxic increase in [Ca2+]i. The [Ca2+]i increase by Na2S was inhibited by Ca2+ depletion in the endoplasmic reticulum (ER) but not by removal of extracellular Ca2+, indicating that H2S releases Ca2+ from the ER. On the other hand, Na2S inhibited ATP-induced [Ca2+]i increase when Na2S clearly increased [Ca2+]i in the astrocytes, which was not suppressed by a reducing agent. In addition, Na2S had no effect on intracellular cyclic AMP (cAMP) level. These results indicate that oxidative post-translational modification of proteins and cAMP are not involved in the inhibitory effect of H2S on ATP-induced Ca2+ signaling. We conclude that H2S indirectly inhibits ATP-induced Ca2+ signaling by decreasing Ca2+ content in the ER in astrocytes. In this way, H2S may influence intercellular communication between astrocytes and neurons, thereby contributing to neuronal signaling in the nervous system.
Collapse
Affiliation(s)
- Takeshi Nii
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
9
|
Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021; 12:704620. [PMID: 34335475 PMCID: PMC8322845 DOI: 10.3389/fendo.2021.704620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S), as one of the three known gaseous signal transduction molecules in organisms, has attracted a surging amount of attention. H2S is involved in a variety of physiological and pathological processes in the body, such as dilating blood vessels (regulating blood pressure), protecting tissue from ischemia-reperfusion injury, anti-inflammation, carcinogenesis, or inhibition of cancer, as well as acting on the hypothalamus and pancreas to regulate hormonal metabolism. The change of H2S concentration is related to a variety of endocrine disorders, and the change of hormone concentration also affects the synthesis of H2S. Understanding the effect of biosynthesis and the concentration of H2S on the endocrine system is useful to develop drugs for the treatment of hypertension, diabetes, and other diseases.
Collapse
Affiliation(s)
- Hao-Jie Chen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Lei Qian
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jing-Jing Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ke Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
10
|
Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca 2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12113338. [PMID: 33187307 PMCID: PMC7696676 DOI: 10.3390/cancers12113338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and the third most predominant cancer in the world. CRC is potentially curable with surgical resection of the primary tumor. The clinical problem of colorectal cancer, however, is the spread and outgrowth of metastases, which are difficult to eradicate and lead to a patient’s death. The failure of conventional treatment to significantly improved outcomes in mCRC has prompted the search for alternative molecular targets with the goal of ameliorating the prognosis of these patients. The present investigation revealed that exogenous delivery of hydrogen sulfide (H2S) suppresses proliferation in metastatic colorectal cancer cells by inducing an increase in intracellular Ca2+ concentration. H2S was effective on metastatic, but not normal, cells. Therefore, we propose that exogenous administration of H2S to patients affected by metastatic colorectal carcinoma could represent a promising therapeutic alternative. Abstract Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC cell proliferation is yet to be clearly elucidated, but it could involve an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we sought to assess for the first time whether (and how) sodium hydrosulfide (NaHS), one of the most widely employed H2S donors, induced intracellular Ca2+ signals in primary cultures of human metastatic CRC (mCRC) cells. We provided the evidence that NaHS induced extracellular Ca2+ entry in mCRC cells by activating the Ca2+-permeable channel Transient Receptor Potential Vanilloid 1 (TRPV1) followed by the Na+-dependent recruitment of the reverse-mode of the Na+/Ca2+ (NCX) exchanger. In agreement with these observations, TRPV1 protein was expressed and capsaicin, a selective TRPV1 agonist, induced Ca2+ influx by engaging both TRPV1 and NCX in mCRC cells. Finally, NaHS reduced mCRC cell proliferation, but did not promote apoptosis or aberrant mitochondrial depolarization. These data support the notion that exogenous administration of H2S may prevent mCRC cell proliferation through an increase in [Ca2+]i, which is triggered by TRPV1.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Department of Biology, Cihan University-Erbil, 44001 Erbil, Iraq
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Mauro Vismara
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
| | - Agnese Rumolo
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Kostantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35131 Padua, Italy
| | - Marcello Maestri
- Medical Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mudhir Shekha
- Faculty of Science, Department of Medical Analysis, Tishk International University-Erbil, 44001 Erbil, Iraq;
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianni Francesco Guidetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
- Diagnostic and Pediatric, Department of Sciences Clinic-Surgical, University of Pavia, 27100 Pavia, Italy
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| |
Collapse
|
11
|
Zhang Y, Wang Y, Read E, Fu M, Pei Y, Wu L, Wang R, Yang G. Golgi Stress Response, Hydrogen Sulfide Metabolism, and Intracellular Calcium Homeostasis. Antioxid Redox Signal 2020; 32:583-601. [PMID: 31870162 DOI: 10.1089/ars.2019.7824] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims: The physiological and pathological importance of hydrogen sulfide (H2S) as a novel gasotransmitter has been widely recognized. Cystathionine gamma-lyase (CSE) is one of the major H2S-producing enzymes and it regulates diverse functions in connection with intracellular calcium (Ca2+). The aim of this study is to examine the role of H2S in Golgi stress-related cell injury and skeletal muscle disorders. Results: Golgi stressors (brefeldin A [BFA] and monensin) decreased the expression of GM130 and ATP2C1 (two markers of Golgi stress response), induced Golgi apparatus fragmentation, and caused a higher level of oxidative stress and cell apoptosis in mouse myoblast cells. In addition, Golgi stressors upregulated CSE expression and endogenous H2S generation, and exogenously applied H2S was able to protect but inhibition of CSE/H2S system deteriorated Golgi stress response. Activating transcription factor 4 (ATF4) acted as an upstream molecule to increase CSE expression on Golgi stress response. Mechanically, Golgi stressors induced intracellular level of Ca2+, and chelating cellular Ca2+ markedly attenuated Golgi stress response, indicating the key role of Ca2+ in initiating Golgi stress and cell apoptosis. Further, administration of either angiotensin II or BFA initiated Golgi stress response and induced skeletal muscle atrophy in mice, which was further deteriorated by CSE deficiency but rescued by exogenously applied sodium hydrosulfide (NaHS). Innovation and Conclusion: The activation of the CSE/H2S pathway and the decrease of intracellular Ca2+ are two cellular protective mechanisms against Golgi stress, and the CSE/H2S system would be a target for preventing skeletal muscle dysfunctions.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Life Science, Shanxi University, Taiyuan, China.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ethan Read
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ming Fu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Sciences North Research Institute, Sudbury, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Sciences North Research Institute, Sudbury, Canada
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|