1
|
Zhang L, Ren C, Liu J, Huang S, Wu C, Zhang J. Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today 2024; 29:103995. [PMID: 38670255 DOI: 10.1016/j.drudis.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.
Collapse
Affiliation(s)
- Linxi Zhang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110000, Liaoning, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
3
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
4
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
5
|
(±)-Zanthonitidumines A and B: Two new benzophenanthridine alkaloids enantiomers from Zanthoxylum nitidum and their anti-inflammatory activity. Fitoterapia 2023; 164:105362. [PMID: 36427595 DOI: 10.1016/j.fitote.2022.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Two new benzophenanthridine alkaloids enantiomers (±)-zanthonitidumines A (1) and B (2), along with seven known analogues (3-9), were isolated from Zanthoxylum nitidium. Their structures were elucidated on the basis of extensive spectroscopic techniques and ECD data. Compound 2 exhibited the most significant inhibition of IL-6 generation as well as TNF-α release which suggest that it may be a potential anti-inflammatory agent.
Collapse
|
6
|
Gaona-Tovar E, Estrada-Soto S, González-Trujano ME, Martínez-Vargas D, Hernandez-Leon A, Narváez-González F, Villalobos-Molina R, Almanza-Pérez JC. Antinociceptive and gastroprotective activities of Bocconia arborea S. Watson and its bioactive metabolite dihydrosanguinarine in murine models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115492. [PMID: 35724746 DOI: 10.1016/j.jep.2022.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bocconia arborea S. Watson (Papaveraceae) is known as "palo llora sangre" and is used in Mexican traditional medicine for the treatment of infections, it is also used as anxiolytic, analgesic, and antidiabetic, among others. AIM OF THE STUDY to evaluate the antinociceptive and gastroprotective activities of extracts from B. arborea and dihydrosanguinarine (DHS) in murine models. MATERIALS AND METHODS Organic extracts [hexane (HEX), dichloromethane (DCM) and methanol (MeOH)] were obtained by maceration. DHS was isolated and purified from HEX and DCM by precipitation and chromatographic column, respectively. Organic extracts and DHS were evaluated to determine their antinociceptive effect using formalin test in murine model. Also, the ambulatory effect of the HEX and DHS was determined in Open field test. The possible mechanism of action of DHS was explored in the presence of naltrexone (NTX, 1 mg/kg, i.p.), and picrotoxin (PTX, 1 mg/kg, i.p.). Gastric damage as possible adverse effect or gastroprotection were also investigated. Whereas DHS acute toxicological study was done, and 100 mg/kg of DHS was examined by electroencephalographic (EEG) analysis to discard neurotoxic effects. RESULTS The B. arborea extracts significantly showed effects in both neurogenic and inflammatory phases of the formalin test, where the HEX extract reached the major antinociceptive effect. A significant and dose-response (10, 30, and 100 mg/kg) antinociceptive activity was observed with the HEX (ED50 = 69 mg/kg) and DHS (ED50 = 85 mg/kg) resembling the effect of the reference analgesic drug tramadol (30 mg/kg). The significant effect of DHS was inhibited in the presence of NTX and PTX. Neither the extracts or DHS produced sedative effects or gastric damage per se at antinociceptive doses. The EEG analysis demonstrated central depressant activity but not sedative or neurotoxic effects at the highest antinociceptive dosage tested, and LD50 is higher than 2000 mg/kg. CONCLUSIONS HEX, DCM, and MeOH extracts showed significant antinociceptive activity, and DHS was identified as one of bioactive compounds without producing sedative, neurotoxic or gastric damage effects, as possible adverse effects reported for analgesic drugs. A role of opioid and GABAA neurotransmission appears to be involved as mechanisms of action of DHS, suggesting its potential for pain therapy and reinforcing the traditional use of B. arborea.
Collapse
Affiliation(s)
- Emmanuel Gaona-Tovar
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico.
| | - María Eva González-Trujano
- Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico.
| | - David Martínez-Vargas
- Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Alberto Hernandez-Leon
- Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Fernando Narváez-González
- ISSSTE Hospital Regional "Gral. Ignacio Zaragoza", Calz. Ignacio Zaragoza 1711, Ejército Constitucionalista, Chinam Pac de Juárez, Iztapalapa, 09220, Ciudad de México, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090, Mexico
| | - Julio C Almanza-Pérez
- Lab. Farmacología, Depto. Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, 09340, Mexico
| |
Collapse
|
7
|
Li C, Shi S, Gao D, Li B, Song G, Chen Y, An H, Xing C. Near-Infrared Light-Responsive Nanoinhibitors for Tumor Suppression through Targeting and Regulating Anion Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31715-31726. [PMID: 35798541 DOI: 10.1021/acsami.2c08503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The gated state of anion channels is involved in the regulation of proliferation and migration of tumors. Specific regulators are urgently needed for efficacious cancer ablation. For this purpose, it is essential to understand the molecular mechanisms of interaction between the regulators and anion channels and apply this knowledge to regulate anion channels. Transmembrane 16A (TMEM16A) is the molecular basis of the calcium-activated chloride channels. It is an anion channel activated by Ca2+, and the inhibition of TMEM16A is associated with a decrease in tumorigenesis. Herein, we characterized a natural compound procyanidin (PC) as an efficacious and selective inhibitor of TMEM16A with an IC50 of 10.6 ± 0.6 μM. Our research revealed the precise sites (D383, R535, and E624) of electrostatic interactions between PC and TMEM16A. Near-infrared (NIR)-light-responsive photothermal conjugated polymer nanoparticles encapsulating PC (CPNs-PC) were established to remotely target and regulate the TMEM16A anion channel. Upon NIR irradiation, CPNs-PC downregulated the signaling pathway downstream of TMEM16A and arrested the cell cycle progression of cancer cells and improved the bioavailability of PC. The tumor inhibition ratio of CPNs-PC was superior to PC by 13.4%. Our findings enabled the development of a strategy to accurately and remotely regulate anion channels to promote tumor regression using NIR-light-responsive conjugated polymer nanoparticles containing specific inhibitors of TMEM16A.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300071, P. R. China
| | - Dong Gao
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Guoqiang Song
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yafei Chen
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hailong An
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
8
|
Guo S, Bai X, Shi S, Li S, Liu X, An H, Kang X. Multi-target tracheloside and doxorubicin combined treatment of lung adenocarcinoma. Biomed Pharmacother 2022; 153:113392. [PMID: 35834992 DOI: 10.1016/j.biopha.2022.113392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is one of the main methods for malignant lung cancer treatment. However, the side effects of chemotherapy drugs are serious and it is prone to drug resistance. Therefore, multi-drug combination chemotherapy is popular in lung cancer treatment. This study found that tracheloside (TCS) was a novel inhibitor of TMEM16A which was specific high expressed in lung cancer tissues. TCS concentration dependently inhibited TMEM16A with an IC50 of 3.09 ± 0.21 μM. It inhibited lung cancer cells proliferation, migration, and induced cells apoptosis targeting TMEM16A. In addition, molecular docking combined with site-directed mutagenesis confirmed that the binding sites of TCS to TMEM16A were S387, E623, E624. Subsequently, multi-target combined drug administration was conducted based on the different drug targets of TCS and doxorubicin (DOX). Both in vitro and in vivo experiments indicated that the combined administration of low concentration of TCS and DOX achieved satisfactory anticancer effect, and it offset the side effects caused by high concentration of DOX. Therefore, TCS is a safe and efficient anticancer lead compound which can enhance the effect of DOX.
Collapse
Affiliation(s)
- Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Postdoctoral Research Station of Biology, Hebei University, Baoding 071002, Hebei, China.
| | - Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
9
|
Guo S, Zhang L, Li N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front Oncol 2022; 12:922838. [PMID: 35734591 PMCID: PMC9207239 DOI: 10.3389/fonc.2022.922838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
ANO1, a calcium-activated chloride channel (CACC), is also known as transmembrane protein 16A (TMEM16A). It plays a vital role in the occurrence, development, metastasis, proliferation, and apoptosis of various malignant tumors. This article reviews the mechanism of ANO1 involved in the replication, proliferation, invasion and apoptosis of various malignant tumors. Various molecules and Stimuli control the expression of ANO1, and the regulatory mechanism of ANO1 is different in tumor cells. To explore the mechanism of ANO1 overexpression and activation of tumor cells by studying the different effects of ANO1. Current studies have shown that ANO1 expression is controlled by 11q13 gene amplification and may also exert cell-specific effects through its interconnected protein network, phosphorylation of different kinases, and signaling pathways. At the same time, ANO1 also resists tumor apoptosis and promotes tumor immune escape. ANO1 can be used as a promising biomarker for detecting certain malignant tumors. Further studies on the channels and the mechanism of protein activity of ANO1 are needed. Finally, the latest inhibitors of ANO1 are summarized, which provides the research direction for the tumor-promoting mechanism of ANO1.
Collapse
Affiliation(s)
- Saisai Guo
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linna Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
11
|
Bai X, Liu X, Li S, An H, Kang X, Guo S. Nuciferine Inhibits TMEM16A in Dietary Adjuvant Therapy for Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3687-3696. [PMID: 35298888 DOI: 10.1021/acs.jafc.1c08375] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality rates. Food therapy is a common adjuvant treatment for lung cancer due to its safety and painlessness. Developing new functional food and exploring novel drug targets is important for lung cancer adjuvant therapy. This study confirmed that the active ingredient nuciferine of the lotus leaf was a novel TMEM16A inhibitor by whole-cell patch clamp experiments and site-directed mutagenesis experiments. CCK8 assay, colony formation assay, wound healing assay, and Annexin-V assay were combined to prove that nuciferine inhibited the proliferation and migration of lung cancer cells and promoted cancer cell apoptosis by targeting TMEM16A. Moreover, the combination of nuciferine and cisplatin significantly enhanced the anti-cancer effect of cisplatin. In addition, the signal transduction pathway of nuciferine regulating LA795 cell proliferation, migration, and apoptosis was confirmed by western blot experiments. In vivo experiments showed that nuciferine was a safe and effective natural anti-cancer product for lung cancer. Tissue section pathological detection and pharmacokinetic experiments verified that intragastric administration of nuciferine significantly enhanced the cancer therapy effect of cisplatin and counteracted the toxicity of high concentrations of cisplatin. Therefore, nuciferine is an ideal functional food for adjuvant lung cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, Hebei Province, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
12
|
Zhang L, Bing S, Dong M, Lu X, Xiong Y. Targeting ion channels for the treatment of lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188629. [PMID: 34610420 DOI: 10.1016/j.bbcan.2021.188629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer is caused by several environmental and genetic variables and is globally associated with elevated morbidity and mortality. Among these variables, membrane-bound ion channels have a key role in regulating multiple signaling pathways in tumor cells and dysregulation of ion channel expression and function is closely related to proliferation, migration, and metastasis of lung cancer. This work reviews and summarizes current knowledge about the role of ion channels in lung cancer, focusing on the changes in the expression and function of various ion channels in lung cancer and how these changes affect lung cancer cell biology both in vitro and in vivo as evidenced by both genetic and pharmacological studies. It can help understand the molecular mechanisms of various ion channels influencing the initiation and progression of lung cancer and shed new insights into their roles in the development and treatment of this deadly disease.
Collapse
Affiliation(s)
- Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China.
| | - Shuya Bing
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Mo Dong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Xiaoqiu Lu
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| | - Yuancheng Xiong
- The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital,2 Zheshan West Road, Wuhu 241000,China
| |
Collapse
|
13
|
Zhao Z, Xue Y, Zhang G, Jia J, Xiu R, Jia Y, Wang Y, Wang X, Li H, Chen P, Zhang X. Identification of evodiamine and rutecarpine as novel TMEM16A inhibitors and their inhibitory effects on peristalsis in isolated Guinea-pig ileum. Eur J Pharmacol 2021; 908:174340. [PMID: 34265294 DOI: 10.1016/j.ejphar.2021.174340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022]
Abstract
The transmembrane member 16A (TMEM16A)-encoded Ca2+-activated Cl- channel (CaCC) is expressed in interstitial cells of Cajal (ICCs) and involved in the generation of the slow-wave currents of gastrointestinal (GI) smooth muscles. TMEM16A modulators have been shown to positively or negatively regulate the contraction of gastrointestinal smooth muscle. Therefore, targeting the pharmacological modulation of TMEM16A may represent a novel treatment approach for gastrointestinal dysfunctions such as constipation and diarrhoea. In this study, evodiamine and rutecarpine were extracted from the traditional Chinese medicine Evodia rutaecarpa and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on intestinal peristalsis were examined. Whole-cell patch clamp results show that evodiamine and rutecarpine inhibited TMEM16A Cl- currents in CHO cells. The half-maximal inhibition values (IC50) of evodiamine and rutecarpine on TMEM16A Cl- currents were 11.8 ± 1.3 μΜ and 9.2 ± 0.4 μM, and the maximal effect values (Emax) were 95.8 ± 5.1% and 99.1 ± 1.6%, respectively. The Lys384, Thr385, and Met524 in TMEM16A are critical for evodiamine and rutecarpine's inhibitory effects. Further functional studies show that both evodiamine and rutecarpine can significantly suppress the peristalsis in isolated guinea-pig ileum. These findings demonstrate that evodiamine and rutecarpine are new TMEM16A inhibitors and support the regulation effect of TMEM16A modulators on gastrointestinal motility.
Collapse
Affiliation(s)
- Zhijun Zhao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yurun Xue
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Gaohua Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jie Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruilian Xiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yugai Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanyuan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangchong Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Honglin Li
- Department of Respiratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China.
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
14
|
Zhang X, Zhang G, Zhao Z, Xiu R, Jia J, Chen P, Liu Y, Wang Y, Yi J. Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119132. [PMID: 34450215 DOI: 10.1016/j.bbamcr.2021.119132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Anoctamin-1 (ANO1), also known as transmembrane protein 16A (TMEM16A), is identified as a Ca2+-activated Cl- channel that is expressed in many organs and tissues. It is involved in numerous major physiological functions and especially in tumor growth. By screening 530 natural compounds, we identified cepharanthine as a potent blocker of ANO1 channels with an IC50 of 11.2 ± 0.9 μM and Emax of 92.7 ± 1.7%. The Lys384, Arg535, Thr539, and Glu624 in ANO1 are critical for the inhibitory effect of cepharanthine. Similar to its effect on ANO1, cepharanthine inhibits ANO2, the closest analog of TMEM16A. In contrast, up to 30 μM of cepharanthine showed limited inhibitory effects on recombinant ANO6 and bestrophin-1-encoded Ca2+-activated Cl- currents, but it showed no effects on endogenous volume-regulated anion currents (VRAC). Cepharanthine could also potently suppress endogenous ANO1 currents, significantly inhibit cell proliferation and migration, and induce apoptosis in LA795 lung adenocarcinoma cells. Moreover, animal experiments have shown that cepharanthine can dramatically inhibit the growth of xenograft tumors in mice. The high specificity provided by cepharanthine could be an important foundation for future studies of the physiological role of ANO1 channels, and these findings may reveal a new mechanism of its anticancer effect.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.; Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Gaohua Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhijun Zhao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruilian Xiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jie Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanshuang Liu
- Department of Diagnostics, School of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanyuan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianfeng Yi
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang, China; Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China..
| |
Collapse
|
15
|
Guo S, Bai X, Liu Y, Shi S, Wang X, Zhan Y, Kang X, Chen Y, An H. Inhibition of TMEM16A by Natural Product Silibinin: Potential Lead Compounds for Treatment of Lung Adenocarcinoma. Front Pharmacol 2021; 12:643489. [PMID: 33935737 PMCID: PMC8079988 DOI: 10.3389/fphar.2021.643489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Effective anticancer therapy can be achieved by identifying novel tumor-specific drug targets and screening of new drugs. Recently, TMEM16A has been identified to be overexpressed in lung adenocarcinoma, and inhibitors of TMEM16A showed obvious antitumor efficacy. Methods: YFP fluorescence quenching and whole-cell patch clamp experiments were used to explore the inhibitory effect of silibinin on TMEM16A. Molecular docking and site-directed mutagenesis were performed to confirm the binding sites of silibinin and TMEM16A. MTT assay, wound healing assay, and annexin-V assay were used to detect the effect of silibinin on cancer cell proliferation, migration, and apoptosis. shRNA was transfected into LA795 cells to knock down the expression of endogenous TMEM16A. Tumor xenograft mice combined with Western blot experiments reveal the inhibitory effect and mechanism of silibinin in vivo. Results: Silibinin concentration dependently inhibited the whole-cell current of TMEM16A with an IC50 of 30.90 ± 2.10 μM. The putative binding sites of silibinin in TMEM16A were K384, R515, and R535. The proliferation and migration of LA795 cells were downregulated by silibinin, and the inhibition effect can be abolished by knockdown of the endogenous TMEM16A. Further, silibinin was injected to tumor xenograft mice which exhibited significant antitumor activity without weight loss. Finally, Western blotting results showed the mechanism of silibinin inhibiting lung adenocarcinoma was through apoptosis and downregulation of cyclin D1. Conclusion: Silibinin is a novel TMEM16A inhibitor, and it can be used as a lead compound for the development of lung adenocarcinoma therapy drugs.
Collapse
Affiliation(s)
- Shuai Guo
- College of Life Science, Hebei University, Baoding, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xue Bai
- College of Life Science, Hebei University, Baoding, China
| | - Yufei Liu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xianjiang Kang
- College of Life Science, Hebei University, Baoding, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|