1
|
Sato S, Kefalov VJ. Characterization of zebrafish rod and cone photoresponses. Sci Rep 2025; 15:13413. [PMID: 40251282 PMCID: PMC12008237 DOI: 10.1038/s41598-025-96058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Sato S, Kefalov V. Characterization of zebrafish rod and cone photoresponses. RESEARCH SQUARE 2025:rs.3.rs-5984163. [PMID: 40162217 PMCID: PMC11952657 DOI: 10.21203/rs.3.rs-5984163/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.
Collapse
|
3
|
Naef V, Damiani D, Licitra R, Marchese M, Vecchia SD, Baggiani M, Brogi L, Galatolo D, Landi S, Santorelli FM. Modeling sacsin depletion in Danio Rerio offers new insight on retinal defects in ARSACS. Neurobiol Dis 2025; 205:106793. [PMID: 39778749 PMCID: PMC11757156 DOI: 10.1016/j.nbd.2025.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
Biallelic mutations in the SACS gene, encoding sacsin, cause early-onset autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disease also characterized by unique and poorly understood retinal abnormalities. While two murine models replicate the phenotypic and neuronal features observed in patients, no retinal phenotype has been described so far. In a zebrafish knock-out strain that faithfully mirrors the main aspects of ARSACS, we observed impaired visual function due to photoreceptor degeneration, likely caused by cell cycle defects in progenitor cells. RNA-seq analysis in embryos revealed dysfunction in proteins related to fat-soluble vitamins (e.g., TTPA, RDH5, VKORC) and suggested a key role of neuroinflammation in driving the retinal defects. Our findings indicate that studying retinal pathology in ARSACS could be crucial for understanding the impact of sacsin depletion and may offer insights into halting disease progression.
Collapse
Affiliation(s)
- Valentina Naef
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| | - Devid Damiani
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Rosario Licitra
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Matteo Baggiani
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Daniele Galatolo
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | | |
Collapse
|
4
|
Gao N, Yang L, Zhu L, Zhu L, Feng J. New Insights into the Visual Toxicity of Organophosphate Esters: An Integrated Quantitative Adverse Outcome Pathway and Cross-chemical Extrapolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22039-22052. [PMID: 39631370 DOI: 10.1021/acs.est.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) have been documented to adversely affect visual function, potentially impacting wildlife survival and human health, thereby necessitating a comprehensive risk assessment. Despite the quantitative adverse outcome pathway (qAOP) holding promise for addressing this concern mechanistically, unclear mode of action and inadequate quantitative understanding across biological levels currently impede its development. Herein, we employed an integrated strategy, combining multiomics analyses, targeted bioassays, and modular model-fitting, to develop and validate a qAOP framework for visual toxicity of OPEs, exemplified by tris(2-butoxyethyl) phosphate, triphenyl phosphate, and tris(1,3-dichloro-2-propyl) phosphate. Our results revealed that these OPEs induce visual dysfunction in zebrafish larvae primarily via oxidative stress, then cascade to damaging photoreceptors and retinal structures, ultimately resulting in the disruption of visual behaviors (i.e., decreased optokinetic response, phototaxis, and visual motor response). The qAOP, validated through cross-chemical extrapolation, enabled the prediction for vision-related effects of OPEs within a certain domain. Integrating toxicokinetic modeling could compensate for the uncertainty in qAOP predictions, since adjusting for internal concentrations as inputs significantly enhanced the accuracy and applicability of the predictions. This work contributes to a better understanding of visual toxicity by OPEs and presents a promising paradigm for quantitative risk assessment based on the qAOP framework.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Zheng N, Liao T, Zhang C, Zhang Z, Yan S, Xi X, Ruan F, Yang C, Zhao Q, Deng W, Huang J, Huang Z, Chen Z, Wang X, Qu Q, Zuo Z, He C. Quantum Dots-caused Retinal Degeneration in Zebrafish Regulated by Ferroptosis and Mitophagy in Retinal Pigment Epithelial Cells through Inhibiting Spliceosome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406343. [PMID: 39420512 PMCID: PMC11633537 DOI: 10.1002/advs.202406343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Quantum dots (QDs) are widely used, but their health impact on the visual system is little known. This study aims to elucidate the effects and mechanisms of typical metallic QDs on retinas using zebrafish. Comprehensive histology, imaging, and bulk RNA sequencing reveal that InP/ZnS QDs cause retinal degeneration. Furthermore, single-cell RNA-seq reveals a reduction in the number of retinal pigment epithelial cells (RPE) and short-wave cone UV photoreceptor cells (PR(UV)), accompanied by an increase in middle- and long-wave cone red, green, and blue photoreceptor cells [PR(RGB)]. Mechanistically, after endocytosis by RPE, InP/ZnS QDs inhibit the expression of splicing factor prpf8, resulting in gpx4b mRNA unsplicing, which finally decrease glutathione and induce ferroptosis and mitophagy. The decrease of RPE fails to engulf the damaged outer segments of PR, possibly promoting the differentiation of PR(UV) to PR(RGB). Knockout prpf8 or gpx4b with CRISPR/Cas9 system, the retinal damage is also observed. Whereas, overexpression of prpf8 or gpx4b, or supplement of glutathione can rescue the retinal degenerative damage caused by InP/ZnS QDs. In conclusion, this study illustrates the potential health risks of InP/ZnS QDs on eye development and provides valuable insights into the underlying mechanisms of InP/ZnS QDs-caused retinal degeneration.
Collapse
Affiliation(s)
- Naying Zheng
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Tingting Liao
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chuchu Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zheyang Zhang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Sen Yan
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaohan Xi
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Fengkai Ruan
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chunyan Yang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious DiseasesCenter for Molecular Imaging and Translational MedicineXiang An Biomedicine LaboratorySchool of Public HealthXiamen UniversityXiamenFujian361005China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health ResearchFujian Province UniversitySchool of MedicineXiamen UniversityXiamenFujian361005China
| | - Jialiang Huang
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zi‐Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Zhi‐Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk ControlGuangdong‐Hong Kong‐Macao Joint Laboratory for Contaminants Exposure and HealthSchool of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiang Wang
- Department of ChemistryState Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (i‐ChEM)Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Qingming Qu
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhenghong Zuo
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| | - Chengyong He
- Department of Ophthalmology in Xiang'an Hospital of Xiamen UniversityState Key Laboratory of Cellular Stress BiologySchool of Life SciencesFaculty of Medicine and Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
6
|
Li Y, Yan Z, Lu Z, Li K. Zebrafish gender-specific anxiety-like behavioral and physiological reactions elicited by caffeine. Behav Brain Res 2024; 472:115151. [PMID: 39019091 DOI: 10.1016/j.bbr.2024.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Caffeine exerts a biphasic effect on zebrafish behavior. High doses of caffeine have been associated with increased stress and anxiety, whereas low doses have been found to enhance performance on tasks requiring focus and attention. However, the sex-specific nature of these biphasic effects on behavior and physiology remains unclear. This study assessed the behavioral responses and hormone levels in male and female zebrafish after acute exposure to caffeine ranging from 0.3 to 600 mg/L. The results showed no significant difference in caffeine intake between males and females after acute exposure at each concentration. Caffeine-induced behavioral and physiological responses indicated a threshold dosage existed between 30 and 300 mg/L. Female fish displayed increased anxiety-like behavioral phenotypes, i.e., latency to upper and freezing, whereas males exhibited more erratic movement following acute exposure to a high-dose treatment. In addition, females exhibited a significant increase in whole-body cortisol levels, while males experienced a testosterone elevation at 300 mg/L of caffeine acute exposure. There was a significant decrease in the duration of erratic movements in males treated with the androgen receptor antagonist flutamide compared to the control group. The transcriptome analysis uncovered 511 and 592 up-regulated and 761 and 922 down-regulated differential expression genes in males and females, respectively, compared to the control. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis revealed that caffeine has the potential to impact various pathways in zebrafish, including phototransduction and steroid hormone biosynthesis. Our findings demonstrate that testosterone and cortisol play a combined role in regulating stress responses in both behavior and physiology. Furthermore, our study highlights the significance of encompassing both male and female zebrafish as a model system.
Collapse
Affiliation(s)
- Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 264005, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
7
|
Xu J, Zhao C, Kang Y. The Formation and Renewal of Photoreceptor Outer Segments. Cells 2024; 13:1357. [PMID: 39195247 PMCID: PMC11352558 DOI: 10.3390/cells13161357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The visual system is essential for humans to perceive the environment. In the retina, rod and cone photoreceptor neurons are the initial sites where vision forms. The apical region of both cone and rod photoreceptors contains a light-sensing organelle known as the outer segment (OS), which houses tens of thousands of light-sensitive opsins. The OSs of photoreceptors are not static; they require rhythmic renewal to maintain normal physiological functions. Disruptions in OS renewal can lead to various genetic disorders, such as retinitis pigmentosa (RP). Understanding the patterns and molecular mechanisms of photoreceptor OS renewal remains one of the most intriguing topics in visual biology. This review aims to elucidate the structure of photoreceptor OSs, the molecular mechanisms underlying photoreceptor OS renewal, and the retinal diseases resulting from defects in this renewal process. Additionally, we will explore retinal diseases related to photoreceptor OS renewal and potential therapeutic strategies, concluding with a discussion on future research directions for OS renewal.
Collapse
Affiliation(s)
- Jingjin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.X.); (C.Z.)
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chengtian Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.X.); (C.Z.)
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (J.X.); (C.Z.)
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Green SL, Silvester E, Dworkin S, Shakya M, Klein A, Lowe R, Datta K, Holland A. Molecular variations to the proteome of zebrafish larvae induced by environmentally relevant copper concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106963. [PMID: 38776608 DOI: 10.1016/j.aquatox.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Contaminants are increasingly accumulating in aquatic environments and biota, with potential adverse effects on individual organisms, communities and ecosystems. However, studies that explore the molecular changes in fish caused by environmentally relevant concentrations of metals, such as copper (Cu), are limited. This study uses embryos of the model organism zebrafish (Danio rerio) to investigate effect of Cu on the proteome and amino acid (AA) composition of fish. Wild-type embryos at 24 h post-fertilisation were exposed to Cu (2 µg L-1 to 120 µg L-1) for 96 h and the number of healthy larvae were determined based on larvae that had hatched and did not display loss of equilibrium (LOE). The effect concentrations where Cu caused a 10 % (EC10) or 50 % (EC50) decrease in the number of healthy larvae were calculated as 3.7 µg L-1 and 10.9 µg L-1, respectively. Proteomics analysis of embryos exposed to the EC10 and EC50 concentrations of Cu revealed the proteome to differ more strongly after 48 h than 96 h, suggesting the acclimatisation of some larvae. Exposure to excess Cu caused differentially expressed proteins (DEPs) involved in oxidative stress, mitochondrial respiration, and neural transduction as well as the modulation of the AAs (Proline, Glycine and Alanine). This is the first study to suggest that LOE displayed by Cu-stressed fish may involve the disruption to GABAergic proteins and the calcium-dependent inhibitory neurotransmitter GABA. Moreover, this study highlights that proteomics and AA analysis can be used to identify potential biomarkers for environmental monitoring.
Collapse
Affiliation(s)
- Sarah L Green
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia.
| | - Ewen Silvester
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia
| | - Sebastian Dworkin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Manisha Shakya
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, Australia
| | - Annaleise Klein
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Rohan Lowe
- Proteomics and Metabolomics Platform, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Keshava Datta
- Proteomics and Metabolomics Platform, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Aleicia Holland
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia
| |
Collapse
|
9
|
Marchese M, Bernardi S, Ogi A, Licitra R, Silvi G, Mero S, Galatolo D, Gammaldi N, Doccini S, Ratto GM, Rapposelli S, Neuhauss SCF, Zang J, Rocchiccioli S, Michelucci E, Ceccherini E, Santorelli FM. Targeting autophagy impairment improves the phenotype of a novel CLN8 zebrafish model. Neurobiol Dis 2024; 197:106536. [PMID: 38763444 PMCID: PMC11163972 DOI: 10.1016/j.nbd.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.
Collapse
Affiliation(s)
- Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| | - Sara Bernardi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Asahi Ogi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Giada Silvi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Serena Mero
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Daniele Galatolo
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Nicola Gammaldi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Stefano Doccini
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| | | | - Stephan C F Neuhauss
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | - Jingjing Zang
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | | | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Institute of Chemistry of Organometallic Compounds, National Research Council, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Filippo M Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| |
Collapse
|
10
|
Qu X, Huang Q, Li H, Lou F. Comparative transcriptomics revealed the ecological trap effect of linearly polarized light on Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101234. [PMID: 38631126 DOI: 10.1016/j.cbd.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Although polarized light can assist many animals in performing special visual tasks, current polarized light pollution (PLP) caused by urban construction has been shown to induce maladaptive behaviors of PL-sensitive animals and change ecological interactions. However, the underlying mechanisms remain unclear. Our previous work hypothesized that linearly polarized light (LPL) is an ecological trap for Oratosquilla oratoria, a common Stomatopoda species in the China Sea. Here we explored the underlying negative effects of artificially LPL on O. oratoria based on comparative transcriptomics. We identified 3616 differentially expressed genes (DEGs) in O. oratoria compound eyes continuous exposed to natural light (NL) and LPL scenarios. In comparison with the NL scenario, a total of 1972 up- and 1644 down- regulated genes were obtained from the O. oratoria compound eyes under LPL scenario, respectively. Furthermore, we performed functional annotation of those DEGs described above and identified 65 DEGs related to phototransduction, reproduction, immunity, and synapse. Based on the functional information, we suspected that continuous LPL exposure could block the light transmission, disrupt the reproductive process, and lead to the progressive failure of the immune response of O. oratoria. In conclusion, this study is the first to systematically describe the negative effects of artificial LPL exposure on O. oratoria at the genetic level, and it can improve the biological conservation theory behind PLP.
Collapse
Affiliation(s)
- Xiuyu Qu
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Qi Huang
- School of Food Science and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai 264003, Shandong, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| |
Collapse
|
11
|
He S, He J, Ma S, Wei K, Wu F, Xu J, Jin X, Zhao Y, Martyniuk CJ. Liquid crystal monomers disrupt photoreceptor patterning of zebrafish larvae via thyroid hormone signaling. ENVIRONMENT INTERNATIONAL 2024; 188:108747. [PMID: 38761427 DOI: 10.1016/j.envint.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Liquid crystal monomers (LCMs) are the raw material for liquid crystal displays, and their use is steadily increasing in electronic products. Recently, LCMs have been reported to be novel endocrine disrupting chemicals, however, the mechanisms underlying their potential for thyroid hormone disruption and visual toxicity are not well understood. In this study, six widely used fluorinated LCMs (FLCMs) were selected to determine putative mechanisms underlying FLCM-induced toxicity to the zebrafish thyroid and visual systems. Exposure to FLCMs caused damage to retinal structures and reduced cell density of ganglion cell layer, inner nuclear layer, and photoreceptor layer approximately 12.6-46.1%. Exposure to FLCMs also disrupted thyroid hormone levels and perturbed the hypothalamic-pituitary-thyroid axis by affecting key enzymes and protein in zebrafish larvae. A thyroid hormone-dependent GH3 cell viability assay supported the hypothesis that FLCMs act as thyroid hormone disrupting chemicals. It was also determined that FLCMs containing aliphatic ring structures may have a higher potential for T3 antagonism compared to FLCMs without an aliphatic ring. Molecular docking in silico suggested that FLCMs may affect biological functions of thyroxine binding globulin, membrane receptor integrin, and thyroid receptor beta. Lastly, the visual motor response of zebrafish in red- and green-light was significantly inhibited following exposure to FLCMs. Taken together, we demonstrate that FLCMs can act as thyroid hormone disruptors to induce visual dysfunction in zebrafish via several molecular mechanisms.
Collapse
Affiliation(s)
- Shan He
- College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Siying Ma
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kunyu Wei
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Sharkova M, Aparicio G, Mouzaaber C, Zolessi FR, Hocking JC. Photoreceptor calyceal processes accompany the developing outer segment, adopting a stable length despite a dynamic core. J Cell Sci 2024; 137:jcs261721. [PMID: 38477343 PMCID: PMC11058337 DOI: 10.1242/jcs.261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Aparicio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Constantin Mouzaaber
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Flavio R. Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, 11400, Uruguay
- Institut Pasteur Montevideo, Uruguay
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Lou F, Ren Z, Tang Y, Han Z. Full-length transcriptome reveals the circularly polarized light response-related molecular genetic characteristics of Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101183. [PMID: 38141370 DOI: 10.1016/j.cbd.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
The mantis shrimp is the only animal that can recognize circularly polarized light (CPL), but its molecular genetic characteristics are unclear. Multi-tissue level full-length (FL) transcriptome sequencing of Oratosquilla oratoria, a representative widely distributed mantis shrimp, was performed in the present study. We used comparative transcriptomics to explore the critical genes of O. oratoria selected by CPL and the GNβ gene associated with CPL signal transduction was hypothesized to be positively selected. Furthermore, the FL transcriptomes of O. oratoria compound eyes under five light conditions were sequenced and used to detect alternative splicing (AS). The ASs associated with CPL recognition mainly occurred in the LWS, ARR and TRPC regions. The number of FL transcripts with AS events and annotation information also provided evidence that O. oratoria could recognize LCPL. Additionally, 51 sequences belonging to the LWS, UV and Peropsin gene families were identified based on conserved 7tm domains. The LWS, UV and Peropsin opsins have similar 3D structures with seven domains across the cell membrane and conserved KSLRTPSN, DRY, and QAKK motifs. In conclusion, these results are undoubtedly valuable for perfecting the vision theory of O. oratoria and other mantis shrimp.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| | - Zhongjie Ren
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Yongzheng Tang
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China.
| |
Collapse
|
14
|
Fangrui L, Jiaoli Z, Schunter C, Lin W, Yongzheng T, Zhiqiang H, Bin K. How Oratosquilla oratoria compound eye response to the polarization of light: In the perspective of vision genes and related proteins. Int J Biol Macromol 2024; 259:129053. [PMID: 38161015 DOI: 10.1016/j.ijbiomac.2023.129053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The special rhabdom structure of the mid-band ommatidium in compound eye contributes to the mantis shrimp being the only animal species known to science that can recognize circularly polarized light (CPL). Although the number of mid-band ommatidium of Oratosquilla oratoria is reduced, the mid-band ommatidium still has orthogonal geometric interleaved rhabdom and short oval distal rhabdom, which may mean that the O. oratoria has weakened circular polarized light vision (CPLV). Here we explored the molecular mechanisms of how O. oratoria response to the polarization of light. Based on the specific expression patterns of vision-related functional genes and proteins, we suggest that the order of light response by O. oratoria compound eye was first natural light, then left-circularly polarized light (LCPL), linearly polarized light, right-circularly polarized light (RCPL) and dark. Meanwhile, we found that the expression levels of vision-related functional genes and proteins in O. oratoria compound eye under RCPL were not significantly different from those in DL, which may imply that O. oratoria cannot respond to RCPL. Furthermore, the response of LCPL is likely facilitated by the differential expression of opsin and microvilli - related functional genes and proteins (arrestin and sodium-coupled neutral amino acid transporter). In conclusion, this study systematically illustrated for the first time how O. oratoria compound eye response to the polarization of light at the genetic level, and it can improve the visual ecological theory behind polarized light vision evolution.
Collapse
Affiliation(s)
- Lou Fangrui
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Zhou Jiaoli
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong Hong Kong SAR, China
| | - Wang Lin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Tang Yongzheng
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Han Zhiqiang
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Kang Bin
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
15
|
Abuelnasr B, Stinchcombe AR. A multi-scale simulation of retinal physiology. Math Biosci 2023; 363:109053. [PMID: 37517550 DOI: 10.1016/j.mbs.2023.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
We present a detailed physiological model of the (human) retina that includes the biochemistry and electrophysiology of phototransduction, neuronal electrical coupling, and the spherical geometry of the eye. The model is a parabolic-elliptic system of partial differential equations based on the mathematical framework of the bi-domain equations, which we have generalized to account for multiple cell-types. We discretize in space with non-uniform finite differences and step through time with a custom adaptive time-stepper that employs a backward differentiation formula and an inexact Newton method. A refinement study confirms the accuracy and efficiency of our numerical method. Numerical simulations using the model compare favorably with experimental findings, such as desensitization to light stimuli and calcium buffering in photoreceptors. Other numerical simulations suggest an interplay between photoreceptor gap junctions and inner segment, but not outer segment, calcium concentration. Applications of this model and simulation include analysis of retinal calcium imaging experiments, the design of electroretinograms, the design of visual prosthetics, and studies of ephaptic coupling within the retina.
Collapse
Affiliation(s)
- Belal Abuelnasr
- Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada.
| | - Adam R Stinchcombe
- Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4, Canada.
| |
Collapse
|
16
|
Yi J, Ma Y, Ma J, Yu H, Zhang K, Jin L, Yang Q, Sun D, Wu D. Rapid Assessment of Ocular Toxicity from Environmental Contaminants Based on Visually Mediated Zebrafish Behavior Studies. TOXICS 2023; 11:706. [PMID: 37624211 PMCID: PMC10459940 DOI: 10.3390/toxics11080706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of contaminants in the environment has increased in recent years, and studies have demonstrated that these contaminants have the ability to penetrate the blood-retinal barrier and directly affect the visual systems of organisms. Zebrafish are recognized as an ideal model for human eye diseases due to their anatomical and functional similarities to the human eye, making them an efficient and versatile organism for studying ocular toxicity caused by environmental contaminants in the field of environmental toxicology. Meanwhile, zebrafish exhibit a diverse repertoire of visually mediated behaviors, and their visual system undergoes complex changes in behavioral responses when exposed to environmental contaminants, enabling rapid assessment of the ocular toxicity induced by such pollutants. Therefore, this review aimed to highlight the effectiveness of zebrafish as a model for examining the effects of environmental contaminants on ocular development. Special attention is given to the visually mediated behavior of zebrafish, which allows for a rapid assessment of ocular toxicity resulting from exposure to environmental contaminants. Additionally, the potential mechanisms by which environmental contaminants may induce ocular toxicity are briefly outlined.
Collapse
Affiliation(s)
- Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Dejun Wu
- Emergency Department, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
17
|
Abu Bakar N, Wan Ibrahim WN, Zulkiflli AR, Saleh Hodin NA, Kim TY, Ling YS, Md Ajat MM, Shaari K, Shohaimi S, Nasruddin NS, Mohd Faudzi SM, Kim CH. Embryonic mercury exposure in zebrafish: Alteration of metabolites and gene expression, related to visual and behavioral impairments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114862. [PMID: 37004432 DOI: 10.1016/j.ecoenv.2023.114862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The widespread presence of mercury, a heavy metal found in the environment and used in numerous industries and domestic, raises concerns about its potential impact on human health. Nevertheless, the adverse effects of this environmental toxicant at low concentrations are often underestimated. There are emerging studies showing that accumulation of mercury in the eye may contribute to visual impairment and a comorbidity between autism spectrum disorders (ASD) trait and visual impairment. However, the underlying mechanism of visual impairment in humans and rodents is challenging. In response to this issue, zebrafish larvae with a cone-dominated retinal visual system were exposed to 100 nM mercury chloride (HgCl2), according to our previous study, followed by light-dark stimulation, a social assay, and color preference to examine the functionality of the visual system in relation to ASD-like behavior. Exposure of embryos to HgCl2 from gastrulation to hatching increased locomotor activity in the dark, reduced shoaling and exploratory behavior, and impaired color preference. Defects in microridges as the first barrier may serve as primary tools for HgCl2 toxicity affecting vision. Depletion of polyunsaturated fatty acids (PUFAs), linoleic acid, arachidonic acid (ARA), alpha-linoleic acid, docosahexaenoic acid (DHA), stearic acid, L-phenylalanine, isoleucine, L-lysine, and N-acetylputrescine, along with the increase of gamma-aminobutyric acid (GABA), sphingosine-1-phosphate, and citrulline assayed by liquid chromatography-mass spectrometry (LC-MS) suggest that these metabolites serve as biomarkers of retinal impairments that affect vision and behavior. Although suppression of adsl, shank3a, tsc1b, and nrxn1a gene expression was observed, among these tsc1b showed more positive correlation with ASD. Collectively, these results contribute new insights into the possible mechanism of mercury toxicity give rise to visual, cognitive, and social deficits in zebrafish.
Collapse
Affiliation(s)
- Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Abdul Rahman Zulkiflli
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Atikah Saleh Hodin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yee Soon Ling
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mohd Mokrish Md Ajat
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Centre for Craniofacial Diagnostics, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), 50300 Kuala Lumpur, Malaysia
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
18
|
Zhang J, Jing M, Li P, Sun L, Pi X, Jiang N, Zhu KK, Li H, Li J, Wang M, Zhang J, Liu M, Mu H, Hu Y, Cui X. Knockout of DLIC1 leads to retinal cone degeneration via disturbing Rab8 transport in zebrafish. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166645. [PMID: 36682603 DOI: 10.1016/j.bbadis.2023.166645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Retinal photoreceptors execute phototransduction functions and require an efficient system for the transport of materials (e.g. proteins and lipids) from inner segments to outer segments. Cytoplasmic dynein 1 is a minus-end-directed microtubule motor and participates in cargo transport in the cytoplasm. However, the roles of dynein 1 motor in photoreceptor cargo transport and retinal development are still ambiguous. In our present study, the light intermediate chain protein DLIC1 (encoded by dync1li1), links activating adaptors to bind diverse cargos in the dynein 1 motor, was depleted using CRISPR-Cas9 technology in zebrafish. The dync1li1-/- zebrafish displayed progressive degeneration of retinal cone photoreceptors, especially blue cones. The retinal rods were not affected in dync1li1-/- zebrafish. Knockout of DLIC1 resulted in abnormal expression and localization of cone opsins in dync1li1-/- retinas. TUNEL staining suggested that apoptosis was induced after aberrant accumulation of cone opsins in photoreceptors of dync1li1-/- zebrafish. Instead of Rab11 transport, Rab8 transport was disturbed in dync1li1-/- retinas. Our data demonstrate that DLIC1 is required for function maintenance and survival of cone photoreceptors, and hint at an essential role of the cytoplasmic dynein 1 motor in photoreceptor cargo transport.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Min Jing
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ping Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Luqian Sun
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ning Jiang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ke-Ke Zhu
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.
| |
Collapse
|
19
|
Song DJ, Bao XL, Fan B, Li GY. Mechanism of Cone Degeneration in Retinitis Pigmentosa. Cell Mol Neurobiol 2023; 43:1037-1048. [PMID: 35792991 PMCID: PMC11414453 DOI: 10.1007/s10571-022-01243-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of genetic disorders resulting in inherited blindness due to the degeneration of rod and cone photoreceptors. The various mechanisms underlying rod degeneration primarily rely on genetic mutations, leading to night blindness initially. Cones gradually degenerate after rods are almost eliminated, resulting in varying degrees of visual disability and blindness. The mechanism of cone degeneration remains unclear. An understanding of the mechanisms underlying cone degeneration in RP, a highly heterogeneous disease, is essential to develop novel treatments of RP. Herein, we review recent advancements in the five hypotheses of cone degeneration, including oxidative stress, trophic factors, metabolic stress, light damage, and inflammation activation. We also discuss the connection among these theories to provide a better understanding of secondary cone degeneration in RP. Five current mechanisms of cone degenerations in RP Interactions among different pathways are involved in RP.
Collapse
Affiliation(s)
- De-Juan Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xiao-Li Bao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
20
|
Tebbe L, Mwoyosvi ML, Crane R, Makia MS, Kakakhel M, Cosgrove D, Al-Ubaidi MR, Naash MI. The usherin mutation c.2299delG leads to its mislocalization and disrupts interactions with whirlin and VLGR1. Nat Commun 2023; 14:972. [PMID: 36810733 PMCID: PMC9944904 DOI: 10.1038/s41467-023-36431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a-/- model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.2299delG. This mouse exhibits retinal degeneration and expresses a truncated, glycosylated protein which is mislocalized to the photoreceptor inner segment. The degeneration is associated with a decline in retinal function, structural abnormalities in connecting cilium and outer segment and mislocaliztion of the usherin interactors very long G-protein receptor 1 and whirlin. The onset of symptoms is significantly earlier compared to Ush2a-/-, proving expression of mutated protein is required to recapitulate the patients' retinal phenotype.
Collapse
Affiliation(s)
- Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
21
|
Caruso G, Klaus C, Hamm HE, Gurevich VV, Bisegna P, Andreucci D, DiBenedetto E, Makino CL. Pepperberg plot: Modeling flash response saturation in retinal rods of mouse. Front Mol Neurosci 2023; 15:1054449. [PMID: 36710929 PMCID: PMC9880052 DOI: 10.3389/fnmol.2022.1054449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Rome, Italy
| | - Colin Klaus
- The College of Public Health Division of Biostatistics and The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Andreucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
22
|
Bise T, Pfefferli C, Bonvin M, Taylor L, Lischer HEL, Bruggmann R, Jaźwińska A. The regeneration-responsive element careg monitors activation of Müller glia after MNU-induced damage of photoreceptors in the zebrafish retina. Front Mol Neurosci 2023; 16:1160707. [PMID: 37138703 PMCID: PMC10149768 DOI: 10.3389/fnmol.2023.1160707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
In contrast to mammals, zebrafish can regenerate their damaged photoreceptors. This capacity depends on the intrinsic plasticity of Müller glia (MG). Here, we identified that the transgenic reporter careg, a marker of regenerating fin and heart, also participates in retina restoration in zebrafish. After methylnitrosourea (MNU) treatment, the retina became deteriorated and contained damaged cell types including rods, UV-sensitive cones and the outer plexiform layer. This phenotype was associated with the induction of careg expression in a subset of MG until the reconstruction of the photoreceptor synaptic layer. Single-cell RNA sequencing (scRNAseq) analysis of regenerating retinas revealed a population of immature rods, defined by high expression of rhodopsin and the ciliogenesis gene meig1, but low expression of phototransduction genes. Furthermore, cones displayed deregulation of metabolic and visual perception genes in response to retina injury. Comparison between careg:EGFP expressing and non-expressing MG demonstrated that these two subpopulations are characterized by distinct molecular signatures, suggesting their heterogenous responsiveness to the regenerative program. Dynamics of ribosomal protein S6 phosphorylation showed that TOR signaling became progressively switched from MG to progenitors. Inhibition of TOR with rapamycin reduced the cell cycle activity, but neither affected careg:EGFP expression in MG, nor prevented restoration of the retina structure. This indicates that MG reprogramming, and progenitor cell proliferation might be regulated by distinct mechanisms. In conclusion, the careg reporter detects activated MG, and provides a common marker of regeneration-competent cells in diverse zebrafish organs, including the retina.
Collapse
Affiliation(s)
- Thomas Bise
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Marylène Bonvin
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lea Taylor
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Heidi E. L. Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Anna Jaźwińska,
| |
Collapse
|
23
|
Roy S, Nagrale P. Encoding the Photoreceptors of the Human Eye. Cureus 2022; 14:e30125. [PMID: 36381896 PMCID: PMC9644661 DOI: 10.7759/cureus.30125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
This review aims to assess the anatomy of the human eye with a focus on exploring opportunities to mimic certain functionalities of photoreceptors in the optical system. This can help restore vision issues in people who had normal vision earlier, but their vision was impaired due to reasons that damaged parts of the eye; however, the functionality of the optic nerve remained intact. It is a conceptual article where the methodology to simulate artificial photoreceptors is discussed.
Collapse
Affiliation(s)
- Shreya Roy
- Medical Student, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Prachi Nagrale
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
24
|
Ferroptosis and Apoptosis Are Involved in the Formation of L-Selenomethionine-Induced Ocular Defects in Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms23094783. [PMID: 35563172 PMCID: PMC9100823 DOI: 10.3390/ijms23094783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Selenium is an essential trace element for humans and other vertebrates, playing an important role in antioxidant defense, neurobiology and reproduction. However, the toxicity of excessive selenium has not been thoroughly evaluated, especially for the visual system of vertebrates. In this study, fertilized zebrafish embryos were treated with 0.5 µM L-selenomethionine to investigate how excessive selenium alters zebrafish eye development. Selenium-stressed zebrafish embryos showed microphthalmia and altered expression of genes required for retinal neurogenesis. Moreover, ectopic proliferation, disrupted mitochondrial morphology, elevated ROS-induced oxidative stress, apoptosis and ferroptosis were observed in selenium-stressed embryos. Two antioxidants—reduced glutathione (GSH) and N-acetylcysteine (NAC)—and the ferroptosis inhibitor ferrostatin (Fer-1) were unable to rescue selenium-induced eye defects, but the ferroptosis and apoptosis activator cisplatin (CDDP) was able to improve microphthalmia and the expression of retina-specific genes in selenium-stressed embryos. In summary, our results reveal that ferroptosis and apoptosis might play a key role in selenium-induced defects of embryonic eye development. The findings not only provide new insights into selenium-induced cellular damage and death, but also important implications for studying the association between excessive selenium and ocular diseases in the future.
Collapse
|
25
|
Vargas JA, Finnemann SC. Probing Photoreceptor Outer Segment Phagocytosis by the RPE In Vivo: Models and Methodologies. Int J Mol Sci 2022; 23:ijms23073661. [PMID: 35409021 PMCID: PMC8998817 DOI: 10.3390/ijms23073661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the vertebrate retina, the light-sensitive photoreceptor rods and cones constantly undergo renewal by generating new portions of the outer segment and shedding their distal, spent tips. The neighboring RPE provides the critical function of engulfing the spent material by phagocytosis. RPE phagocytosis of shed rod outer segment fragments is a circadian process that occurs in a burst of activity shortly after daily light onset with low activity at other times, a rhythm that has been reported for many species and over 50 years. In this review, we compare studies on the rhythm and quantity of RPE phagocytosis using different in vivo model systems and assessment methods. We discuss how measurement methodology impacts the observation and analysis of RPE phagocytosis. Published studies on RPE phagocytosis investigating mice further suggest that differences in genetic background and housing conditions may affect results. Altogether, a comparison between RPE phagocytosis studies performed using differing methodology and strains of the same species is not as straightforward as previously thought.
Collapse
|
26
|
Bentley-Ford MR, LaBonty M, Thomas HR, Haycraft CJ, Scott M, LaFayette C, Croyle MJ, Andersen RS, Parant JM, Yoder BK. Evolutionarily conserved genetic interactions between nphp-4 and bbs-5 mutations exacerbate ciliopathy phenotypes. Genetics 2022; 220:iyab209. [PMID: 34850872 PMCID: PMC8733634 DOI: 10.1093/genetics/iyab209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are sensory and signaling hubs with a protein composition that is distinct from the rest of the cell due to the barrier function of the transition zone (TZ) at the base of the cilium. Protein transport across the TZ is mediated in part by the BBSome, and mutations disrupting TZ and BBSome proteins cause human ciliopathy syndromes. Ciliopathies have phenotypic variability even among patients with identical genetic variants, suggesting a role for modifier loci. To identify potential ciliopathy modifiers, we performed a mutagenesis screen on nphp-4 mutant Caenorhabditis elegans and uncovered a novel allele of bbs-5. Nphp-4;bbs-5 double mutant worms have phenotypes not observed in either individual mutant strain. To test whether this genetic interaction is conserved, we also analyzed zebrafish and mouse mutants. While Nphp4 mutant zebrafish appeared overtly normal, Bbs5 mutants exhibited scoliosis. When combined, Nphp4;Bbs5 double mutant zebrafish did not exhibit synergistic effects, but the lack of a phenotype in Nphp4 mutants makes interpreting these data difficult. In contrast, Nphp4;Bbs5 double mutant mice were not viable and there were fewer mice than expected carrying three mutant alleles. In addition, postnatal loss of Bbs5 in mice using a conditional allele compromised survival when combined with an Nphp4 allele. As cilia are still formed in the double mutant mice, the exacerbated phenotype is likely a consequence of disrupted ciliary signaling. Collectively, these data support an evolutionarily conserved genetic interaction between Bbs5 and Nphp4 alleles that may contribute to the variability in ciliopathy phenotypes.
Collapse
Affiliation(s)
- Melissa R Bentley-Ford
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Melissa LaBonty
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikyla Scott
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cameron LaFayette
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Reagan S Andersen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021; 10:cells10113265. [PMID: 34831487 PMCID: PMC8622914 DOI: 10.3390/cells10113265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.
Collapse
|
28
|
Ogawa Y, Corbo JC. Partitioning of gene expression among zebrafish photoreceptor subtypes. Sci Rep 2021; 11:17340. [PMID: 34462505 PMCID: PMC8405809 DOI: 10.1038/s41598-021-96837-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate photoreceptors are categorized into two broad classes, rods and cones, responsible for dim- and bright-light vision, respectively. While many molecular features that distinguish rods and cones are known, gene expression differences among cone subtypes remain poorly understood. Teleost fishes are renowned for the diversity of their photoreceptor systems. Here, we used single-cell RNA-seq to profile adult photoreceptors in zebrafish, a teleost. We found that in addition to the four canonical zebrafish cone types, there exist subpopulations of green and red cones (previously shown to be located in the ventral retina) that express red-shifted opsin paralogs (opn1mw4 or opn1lw1) as well as a unique combination of cone phototransduction genes. Furthermore, the expression of many paralogous phototransduction genes is partitioned among cone subtypes, analogous to the partitioning of the phototransduction paralogs between rods and cones seen across vertebrates. The partitioned cone-gene pairs arose via the teleost-specific whole-genome duplication or later clade-specific gene duplications. We also discovered that cone subtypes express distinct transcriptional regulators, including many factors not previously implicated in photoreceptor development or differentiation. Overall, our work suggests that partitioning of paralogous gene expression via the action of differentially expressed transcriptional regulators enables diversification of cone subtypes in teleosts.
Collapse
Affiliation(s)
- Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, I-37124, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26111, Oldenburg, Germany
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, Section of Physiology, Via Borsari 46, I-44121, Ferrara, Italy.
| |
Collapse
|
30
|
Ahrens N, Aeissen E, Lippe A, Janssen-Bienhold U, Christoffers J, Koch KW. Farnesylation of Zebrafish G-Protein-Coupled Receptor Kinase Using Bio-orthogonal Labeling. ACS Chem Neurosci 2021; 12:1824-1832. [PMID: 33945258 DOI: 10.1021/acschemneuro.1c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
G-protein-coupled receptors are deactivated or desensitized by phosphorylation by respective G-protein-coupled receptor kinases (GRKs). In zebrafish rod and cone photoreceptor cells, four orthologous GRKs are expressed participating in the deactivation of rod and cone opsins. An important feature of GRKs in general is the consensus sites for lipid modification, which would allow the posttranslational attachment of isoprenoids facilitating membrane association and enzymatic performance. Because direct proof is missing for isoprenoid modification of zebrafish GRKs, we used a semichemical approach to study the incorporation of a farnesyl moiety into a GRK and its cellular consequences. The approach involves organic synthesis of a functionalized farnesyl derivative that is suitable for a subsequent alkyne-azide cycloaddition (click reaction). For this purpose, zebrafish GRK was expressed in HEK293 cells and modified in situ with the synthetic farnesyl moiety. Successful farnesylation by an endogenous farnesyltransferase was detected by immunoblotting and immunocytochemistry using a biotin-streptavidin-coupled assay and ligation with a fluorescence dye, respectively. Immunocytochemical detection of farnesylated GRK in different cell compartments indicates the applicability of the approach for studying the transport of cellular components.
Collapse
Affiliation(s)
- Nicole Ahrens
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Enno Aeissen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Anka Lippe
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Division of Neurobiology, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|