1
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Zhang Y, Zhou A. Macrophage activation contributes to diabetic retinopathy. J Mol Med (Berl) 2024; 102:585-597. [PMID: 38429382 DOI: 10.1007/s00109-024-02437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
3
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
4
|
Yang W, Xia F, Mei F, Shi S, Robichaux WG, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37651112 PMCID: PMC10476449 DOI: 10.1167/iovs.64.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. Methods Mouse models of retinal ischemia-reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. Results Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. Conclusions Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
5
|
Li Y, Zhou H, Huang Q, Tan W, Cai Y, Wang Z, Zou J, Li B, Yoshida S, Zhou Y. Potential biomarkers for retinopathy of prematurity identified by circular RNA profiling in peripheral blood mononuclear cells. Front Immunol 2022; 13:953812. [PMID: 36081509 PMCID: PMC9447331 DOI: 10.3389/fimmu.2022.953812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to reveal the altered expression profiles of circular RNAs (circRNAs) in the peripheral blood mononuclear cells (PBMCs) of patients with retinopathy of prematurity (ROP), and to identify potential biomarkers for ROP diagnosis. Methods Differentially expressed circRNAs in PBMCs of five infants with ROP and five controls were identified using microarray analysis. Twelve altered circRNAs were validated using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatic analyses were conducted to predict the circRNA/miRNA interactions, competing endogenous RNA (ceRNA) network, related biological functions, and signaling pathways. Four selected circRNAs in PBMCs were verified using RT-qPCR in another cohort, including 24 infants with ROP and 23 premature controls, and receiver operating characteristic (ROC) curves were used to estimate their potential as diagnostic biomarkers of ROP. Results A total of 54 and 143 circRNAs were significantly up- and down-regulated, respectively, in the PBMCs of patients with ROP compared with controls. Twelve of the significantly altered circRNAs were preliminarily validated by RT-qPCR, which confirmed the reliability of the microarray analysis. The circRNA/miRNA interactions and ceRNA network were displayed according to the altered circRNAs. Three circRNAs (hsa_circRNA_061346, hsa_circRNA_092369, and hsa_circRNA_103554) were identified as potential diagnostic biomarkers for ROP with certain clinical values. Conclusions CircRNAs were significantly altered in PBMCs of treatment-requiring ROP patients. CircRNAs may be used as potential biomarkers and possible therapeutic targets for ROP.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou,
| |
Collapse
|