1
|
Mitręga KA, Spałek AM, Nożyński J, Porc M, Stankiewicz M, Krzemiński TF. Cardiomyopathy development protection after myocardial infarction in rats: Successful competition for major dihydropyridines' common metabolite against captopril. PLoS One 2017; 12:e0179633. [PMID: 28636634 PMCID: PMC5479558 DOI: 10.1371/journal.pone.0179633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/01/2017] [Indexed: 01/13/2023] Open
Abstract
During the last 25 years angiotensin-converting enzyme inhibitors spectacularly conquered the field of cardiovascular diseases therapy. Nevertheless, lack of new studies concerning side effects associated with their chronic administration seems to be rather confusing. In our previous research, we proved that the main furnidipines' metabolite (M-2) possess multiple cardioprotective actions. Currently, we compared effects of post-infarction long-term oral treatment with M-2 and captopril on hemodynamic parameters and "ischemic cardiomyopathy" development in rats. Myocardial infarction was evoked by permanent left anterior descending coronary artery occlusion for 35 days. Surviving rats were treated with captopril (2 × 25 mg/kg) or M-2 (4 mg/kg) from 6th- 35th day. At 35th day rats' hearts were tested on working heart setup, where following parameters were measured: heart rate, preload pressure, aortic systolic and diastolic pressures, aortic maximum rise and fall, aortic and coronary flow, myocardial oxygen consumption and oximetry in perfusate. Subsequently, heart tissue specimens were assessed during morphological estimation. Captopril caused significant heart rate increase and markedly diminished preload pressure in comparison to M-2. Both drugs evoked essential aortic pressure increase. Aortic flow was significantly decreased after M-2, whereas captopril increased this parameter in comparison to M-2. Both agents caused marked coronary flow increase. Morphologic examination in captopril revealed cardiomyopathic process in 70% of hearts, whereas in M-2 this value reached 30%. Neovascularization of post-infarcted myocardium was visible only after M-2 therapy. Concluding, M-2 presented itself as more attractive agent in long-term post-infarction treatment by preventing cardiomyopathy development, angiogenesis stimulation and preserving cardiac performance.
Collapse
Affiliation(s)
| | - Adrianna M. Spałek
- Chair and Department of Pharmacology, Medical University of Silesia, Zabrze, Poland
| | | | - Maurycy Porc
- Chair and Department of Pharmacology, Medical University of Silesia, Zabrze, Poland
| | | | | |
Collapse
|
2
|
Jabr RI, Hatch FS, Salvage SC, Orlowski A, Lampe PD, Fry CH. Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction. Pflugers Arch 2016; 468:1945-1955. [PMID: 27757582 PMCID: PMC5138272 DOI: 10.1007/s00424-016-1885-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/04/2016] [Accepted: 09/22/2016] [Indexed: 10/27/2022]
Abstract
Cardiac arrhythmias are associated with raised intracellular [Ca2+] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca2+-dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca2+-dependent phosphatase, calcineurin. Intracellular [Ca2+] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca2+]i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca2+]i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca2+-independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca2+]i. PP2A had no role. Conduction velocity was reduced by raised [Ca2+]i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca2+] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.
Collapse
Affiliation(s)
- Rita I Jabr
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK. .,Institute of Cardiovascular Research, Ashford & St Peter's NHS Foundation Trust, Surrey, Chertsey, KT16 0PZ, UK.
| | - Fiona S Hatch
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Samantha C Salvage
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Alejandro Orlowski
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, 98109, USA
| | - Christopher H Fry
- Institute of Cardiovascular Research, Ashford & St Peter's NHS Foundation Trust, Surrey, Chertsey, KT16 0PZ, UK.,School of Physiology, Pharmacology & Neuroscience, University of Bristol, BS8 1TD, Bristol, UK
| |
Collapse
|
3
|
Protić D, Beleslin-Čokić B, Spremović-Rađenović S, Radunović N, Heinle H, Šćepanović R, Gojković Bukarica L. The Different Effects of Resveratrol and Naringenin on Isolated Human Umbilical Vein: The Role of ATP-Sensitive K+
Channels. Phytother Res 2014; 28:1412-8. [DOI: 10.1002/ptr.5145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Dragana Protić
- Department of Pharmacology; Clinical Pharmacology and Toxicology; Faculty of Medicine; University of Belgrade; 11000 Belgrade Serbia
| | - Bojana Beleslin-Čokić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia; Dr. Subotica 13 11000 Belgrade Serbia
| | - Svetlana Spremović-Rađenović
- Faculty of Medicine; University of Belgrade, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia; 11000 Belgrade Serbia
| | - Nebojša Radunović
- Faculty of Medicine; University of Belgrade, Clinic for Gynecology and Obstetrics, Clinical Center of Serbia; 11000 Belgrade Serbia
| | - Helmut Heinle
- Institute of Physiology; University of Tüebingen; Germany
| | - Radisav Šćepanović
- Faculty of Medicine; University of Belgrade, Clinical Center Dr. Dragisa Misovic; 11000 Belgrade Serbia
| | - Ljiljana Gojković Bukarica
- Department of Pharmacology; Clinical Pharmacology and Toxicology; Faculty of Medicine; University of Belgrade; 11000 Belgrade Serbia
| |
Collapse
|
4
|
Cardioprotective Effects of an Active Metabolite of Furnidipine in 2 Models of Isolated Heart and on In Vivo Ischemia–induced and Reperfusion-induced Arrhythmias in Rats. J Cardiovasc Pharmacol 2011; 57:183-93. [DOI: 10.1097/fjc.0b013e318202e2ea] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Krzemiński TF, Hudziak D, Sielańczyk AW, Porc M, Kędzia A. Differential effects of furnidipine and its active metabolites in rat isolated working heart. Vascul Pharmacol 2008; 49:91-6. [DOI: 10.1016/j.vph.2008.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/30/2008] [Indexed: 11/16/2022]
|
6
|
|
7
|
Tokuno T, Muraki K, Watanabe M, Imaizumi Y. Protective effect of benidipine against the abnormal electrical activity in single ventricular myocytes of the guinea pig under simulated ischemic conditions and reperfusion. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:199-209. [PMID: 10887950 DOI: 10.1254/jjp.82.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Induction of electrical abnormalities (EAs) under simulated ischemic conditions and after reperfusion was measured from single cardiac myocytes isolated from guinea pig ventricle using whole-cell voltage or current clamp with perforated patch variation. Conditions of simulated ischemia were produced by the exchange of medium from the standard one oxygenated with 95% O2-5% CO2 gas (pH 7.4) to the modified one, which contained no glucose, 8 mM K+ and 30 mM sodium-D,L-lactate and was gassed with 90% argon-10% CO2 (pH 6.6). Under the simulated ischemia for 20 min, EAs such as delayed afterdepolarization, early afterdepolarization, automatic activity or transient inward current were observed in about 37% of myocytes driven electrically at 1 Hz. Irreversible hypercontracture occurred in myocytes of 10% or less. Upon reperfusion with the standard solution, EAs and hypercontracture were observed in about 43% and 22% of cells, respectively. Glibenclamide-sensitive current was detected during ischemia, but tended to be enhanced during reperfusion. Amplitude of Ca2+ current and ATP-sensitive K+ current after reperfusion varied widely with time and from cell to cell. When myocytes were pretreated for 10 min with 10 nM benidipine, a 1,4-dihydropyridine derivative Ca2+ blocker, the incidence of EAs and hypercontracture was markedly reduced, suggesting the protective effect of benidipine against cardiac cell injury during ischemia and reperfusion.
Collapse
Affiliation(s)
- T Tokuno
- Department of Pharmacology & Therapeutics, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuhoku, Nagoya, Japan
| | | | | | | |
Collapse
|
8
|
Simpson JA, van Eyk JE, Iscoe S. Hypoxemia-induced modification of troponin I and T in canine diaphragm. J Appl Physiol (1985) 2000; 88:753-60. [PMID: 10658047 DOI: 10.1152/jappl.2000.88.2.753] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impaired muscle function (fatigue) may result, in part, from modification of contractile proteins due to inadequate O(2) delivery. We hypothesized that severe hypoxemia would modify skeletal troponin I (TnI) and T (TnT), two regulatory contractile proteins, in respiratory muscles. Severe isocapnic hypoxemia (arterial partial pressure of O(2) of approximately 25 Torr) in six pentobarbital sodium-anesthetized spontaneously breathing dogs increased respiratory frequency and electromyographic activity of the diaphragm and internal and external obliques, with death occurring after 131-285 min. Western blot analysis revealed proteolysis of TnI and TnT, 17.5- and 28-kDa fragments, respectively, and higher molecular mass covalent complexes, one of which (42 kDa) contained TnI (or some fragment of it) and probably TnT in the costal and crural diaphragms but not the intercostal or abdominal muscles. These modifications of myofibrillar proteins may provide a molecular basis for contractile dysfunction, including respiratory failure, under conditions of limited O(2) delivery.
Collapse
Affiliation(s)
- J A Simpson
- Department of Physiology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
9
|
Taguchi T, Satoh TO, Mori M, Takeo S. Effects of an ATP-sensitive potassium channel opener, YM934, on hypoxia/reoxygenation injury of isolated canine cardiac cells. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199911)48:3<113::aid-ddr3>3.0.co;2-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Tang T, Dong C, Duffield R, Ho AK. Protection of cardiomyocytes by pinacidil during metabolic inhibition and hyperkalemia. Eur J Pharmacol 1999; 376:179-87. [PMID: 10440103 DOI: 10.1016/s0014-2999(99)00366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this study is to understand the mechanism underlying the cardioprotective effects of pinacidil, an ATP-sensitive K+ channel (K(ATP)) opener. We examined the effects of 10 microM pinacidil in cultured chicken cardiomyocytes. Pinacidil caused a concentration-dependent delay in metabolic inhibition-induced increase in intracellular calcium concentration ([Ca2+]i) and creatine phosphokinase release, and this action was antagonized by glyburide, a K(ATP) blocker. Neither verapamil, an L-type Ca2+ channel blocker, nor bepridil, a Na+-Ca2+ exchange inhibitor, affected the time course of increase in [Ca2+]i induced by metabolic inhibition. Pinacidil did not have an effect on the amplitude of K+-induced increase in [Ca2+]i, but accelerated the rate of decline following peak stimulation. In contrast, glyburide reduced the amplitude of K+-induced increase in [Ca2+]i and prolonged the rate of decline. These results provide direct evidence that pinacidil protects cardiomyocytes from metabolic inhibition-induced injury by cyanide (CN) through a delay in the onset of increase in [Ca2+]i, rather than by inhibition of the L-type Ca2+-channels or by alteration of Na+-Ca2+ exchange.
Collapse
Affiliation(s)
- T Tang
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, 61656, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Mironov SL, Richter DW. L-type Ca2+ channels in inspiratory neurones of mice and their modulation by hypoxia. J Physiol 1998; 512 ( Pt 1):75-87. [PMID: 9729618 PMCID: PMC2231191 DOI: 10.1111/j.1469-7793.1998.075bf.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Whole-cell (ICa) and single Ca2+ channel currents were measured in inspiratory neurones of neonatal mice (4-12 days old). During whole-cell recordings, ICa slowly declined and disappeared within 10-20 min. The run-down was delayed during hypoxia, indicating ICa potentiation. 2. Ca2+ channels were recorded in cell-attached patches using pipettes which contained 110 mM Ba2+. L-type Ca2+ channels exhibited a non-ohmic I-V relationship. The slope conductance was 24 pS below and 50 pS above their null potential. The open probability of the channels increased during oxygen depletion, reaching a maximum 2 min after the onset of hypoxia. Restoration of the oxygen supply brought the channel activity back to initial levels. 3. The channel activity was enhanced by 3-30 microM S(-)Bay K 8644, an agonist of L-type Ca2+ channels. The open probability was increased about 3-fold and the activation curve was shifted by 20 mV in the hyperpolarizing direction. In the presence of the agonist, channel open time increased and long openings appeared. Agonist-modulated channels were also potentiated during oxygen depletion. The effect was due to an increase in open time and a decrease in closed time. The channels were inhibited by bath application of nifedipine (10 microM) and nitrendipine (20 microM). 4. Weak bases such as NH4Cl and TMA increased and weak acids such as sodium acetate and propionate decreased activity of the channels, indicating that they are modulated by intracellular pH. Bath application of 1 microM forskolin enhanced the channel activity, whereas 500 microM NaF suppressed it. 5. L-type Ca2+ channels were modulated by an agonist for mGluR1/5 receptors, (S)-3, 5-dihydrophenylglycine (DHPG, 5 microM). In its presence, the hypoxic facilitation of channels was abolished. 6. After blockade of L-type Ca2+ channels, the respiratory response to hypoxia was modified. The transient enhancement of the respiratory rhythm (augmentation) was no longer evident and the secondary depression occurred earlier. 7. We suggest that L-type Ca2+ channels contribute to the early hypoxic response of the respiratory centre. Glutamate release during hypoxia stimulates postsynaptic metabotropic glutamate receptors, which activate the Ca2+ channels.
Collapse
Affiliation(s)
- S L Mironov
- II Department of Physiology, University of Gottingen, Humboldtallee 23, 37075 Gottingen, Germany.
| | | |
Collapse
|