1
|
Cabrita I, Benedetto R, Fonseca A, Wanitchakool P, Sirianant L, Skryabin BV, Schenk LK, Pavenstädt H, Schreiber R, Kunzelmann K. Differential effects of anoctamins on intracellular calcium signals. FASEB J 2017; 31:2123-2134. [PMID: 28183802 DOI: 10.1096/fj.201600797rr] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Abstract
The Ca2+-activated Cl- channel TMEM16A [anoctamin (ANO)1] is homologous to yeast Ist2 and has been shown to tether the cortical endoplasmic reticulum (ER) to the plasma membrane. We therefore examined whether ANO1 and other members of the ANO family affect intracellular Ca2+ ([Ca2+]i) signals. It is shown that expression of ANO1 augments Ca2+ store release upon stimulation of GPCRs, whereas knockdown of ANO1, or lack of Ano1 expression in Ano1-/- animals, as shown in an earlier report, inhibits Ca2+ release. ANO6, and -10 show similar effects, whereas expression of ANO4, -8, and -9 attenuate filling of the ER store. The impact of ANO1 and -4 were examined in more detail. ANO1 colocalized and interacted with IP3R, whereas ANO4 colocalized with SERCA Ca2+ pumps and interacted with ORAI-1 channels, respectively. ANO1 Cl currents were rapidly activated exclusively through Ca2+ store release, and remained untouched by influx of extracellular Ca2+ In contrast expression of ANO4 caused a delayed activation of membrane-localized ANO6 channels, solely through store-operated Ca2+ entry via ORAI. Ca2+ signals were inhibited by knocking down expression of endogenous ANO1, -5, -6, and -10 and were also reduced in epithelial cells from Ano10-/- mice. The data suggest that ANOs affect compartmentalized [Ca2+]i signals, which may explain some of the cellular defects related to ANO mutations.-Cabrita, I., Benedetto, R., Fonseca, A., Wanitchakool, P., Sirianant, L., Skryabin, B. V., Schenk, L. K., Pavenstädt, H., Schreiber, R., Kunzelmann, K. Differential effects of anoctamins on intracellular calcium signals.
Collapse
Affiliation(s)
- Inês Cabrita
- Physiological Institute, University of Regensburg, Regensburg, Germany;
| | - Roberta Benedetto
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Ana Fonseca
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | | | - Lalida Sirianant
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Boris V Skryabin
- Department of Medicine (TRAM), University of Münster, Münster, Germany; and
| | - Laura K Schenk
- Department of Internal Medicine D, Universitätsklinikum Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Hermann Pavenstädt
- Department of Internal Medicine D, Universitätsklinikum Münster, Albert-Schweitzer-Campus, Münster, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany;
| |
Collapse
|
2
|
Cellular volume regulation by anoctamin 6: Ca²⁺, phospholipase A2 and osmosensing. Pflugers Arch 2015; 468:335-49. [PMID: 26438191 DOI: 10.1007/s00424-015-1739-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/30/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Abstract
During cell swelling, Cl(-) channels are activated to lower intracellular Cl(-) concentrations and to reduce cell volume, a process termed regulatory volume decrease (RVD). We show that anoctamin 6 (ANO6; TMEM16F) produces volume-regulated anion currents and controls cell volume in four unrelated cell types. Volume regulation is compromised in freshly isolated intestinal epithelial cells from Ano6-/- mice and also in lymphocytes from a patient lacking expression of ANO6. Ca(2+) influx is activated and thus ANO6 is stimulated during cell swelling by local Ca(2+) increase probably in functional nanodomains near the plasma membrane. This leads to stimulation of phospholipase A2 (PLA2) and generation of plasma membrane lysophospholipids, which activates ANO6. Direct application of lysophospholipids also activates an anion current that is inhibited by typical ANO6 blocker. An increase in intracellular Ca(2+) supports activation of ANO6, but is not required when PLA2 is fully activated, while re-addition of arachidonic acid completely blocked ANO6. Moreover, ANO6 is activated by low intracellular Cl(-) concentrations and may therefore operate as a cellular osmosensor. High intracellular Cl(-) concentration inhibits ANO6 and activation by PLA2. Taken together, ANO6 supports volume regulation and volume activation of anion currents by action as a Cl(-) channel or by scrambling membrane phospholipids. Thereby, it may support the function of LRRC8 proteins.
Collapse
|
3
|
Gustafsson JK, Lindén SK, Alwan AH, Scholte BJ, Hansson GC, Sjövall H. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR. Pflugers Arch 2014; 467:1403-1415. [PMID: 25139191 DOI: 10.1007/s00424-014-1595-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 12/26/2022]
Abstract
The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden.
| | - Sara K Lindén
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden
| | - Ala H Alwan
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden
| | - Bob J Scholte
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Medicinaregatan 9A, Box 440, Gothenburg, 405 30, Sweden
| | - Henrik Sjövall
- Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Martins JR, Kongsuphol P, Sammels E, Dahimène S, AlDehni F, Clarke LA, Schreiber R, de Smedt H, Amaral MD, Kunzelmann K. F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Cl− conductance in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1385-92. [DOI: 10.1016/j.bbadis.2011.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
5
|
Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K. CFTR and TMEM16A are Separate but Functionally Related Cl - Channels. Cell Physiol Biochem 2011; 28:715-24. [DOI: 10.1159/000335765] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 11/19/2022] Open
|
6
|
Barro-Soria R, Aldehni F, Almaça J, Witzgall R, Schreiber R, Kunzelmann K. ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch 2009; 459:485-97. [PMID: 19823864 DOI: 10.1007/s00424-009-0745-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023]
Abstract
Bestrophins form Ca(2+)-activated Cl(-) channels and regulate intracellular Ca(2+) signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca(2+) sensor. Intracellular Ca(2+) transients elicited by stimulation of purinergic P2Y(2) receptors in HEK293 cells were augmented by hBest1. The p21-activated protein kinase Pak2 was found to phosphorylate hBest1, thereby enhancing Ca(2+) signaling and activation of Ca(2+)-dependent Cl(-) (TMEM16A) and K(+) (SK4) channels. Lack of bestrophin 1 expression in respiratory epithelial cells of mBest1 knockout mice caused expansion of ER cisterns and induced Ca(2+) deposits. hBest1 is, therefore, important for Ca(2+) handling of the ER store and may resemble the long-suspected counterion channel to balance transient membrane potentials occurring through inositol triphosphate (IP(3))-induced Ca(2+) release and store refill. Thus, bestrophin 1 regulates compartmentalized Ca(2+) signaling that plays an essential role in Best macular dystrophy, inflammatory diseases such as cystic fibrosis, as well as proliferation.
Collapse
Affiliation(s)
- René Barro-Soria
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Spitzner M, Ousingsawat J, Scheidt K, Kunzelmann K, Schreiber R. Voltage-gated K+ channels support proliferation of colonic carcinoma cells. FASEB J 2006; 21:35-44. [PMID: 17135369 DOI: 10.1096/fj.06-6200com] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasma membrane potassium (K+) channels are required for cell proliferation. Evidence is growing that K+ channels play a central role in the development and growth of human cancer. Here we examine the contribution and the mechanism by which K+ channels control proliferation of T84 human colonic carcinoma cells. Numerous K+ channels are expressed in T84 cells, but only voltage-gated K+ (Kv) channels influenced proliferation. A number of Kv channel inhibitors reduced DNA synthesis and cell number, without exerting apoptotic or toxic effects. Expression of several Kv channels, such as EagI, Kv 3.4 and Kv 1.5, was detected in patch clamp experiments and in fluorescence-based assays using a voltage sensitive dye. The contribution of EagI channels to proliferation was confirmed by siRNA, which abolished EagI activity and inhibited cell growth. Inhibition of Kv channels did not interfere with the ability of T84 cells to regulate their cell vol, but it restricted intracellular pH regulation. In addition, inhibitors of Kv channels, as well as siRNA for EagI, attenuated intracellular Ca2+ signaling. The data suggest that Kv channels control proliferation of colonic cancer cells by affecting intracellular pH and Ca2+ signaling.
Collapse
Affiliation(s)
- Melanie Spitzner
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Schultheiss G, Hennig B, Schunack W, Prinz G, Diener M. Histamine-induced ion secretion across rat distal colon: involvement of histamine H1 and H2 receptors. Eur J Pharmacol 2006; 546:161-70. [PMID: 16919622 DOI: 10.1016/j.ejphar.2006.07.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/05/2006] [Accepted: 07/13/2006] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to investigate the effect of histamine, a product of e.g. mast cells, on short-circuit current (I(sc)) across rat distal colon. Histamine concentration-dependently stimulated an increase in I(sc), which often was preceded by a transient negative current. Neither a release of neurotransmitters nor a release of prostaglandins contributed to the histamine response. The histamine-induced increase in I(sc) was blocked by the histamine H(1) antagonist, pyrilamine, but was resistant against the histamine H(2) antagonist, cimetidine. Conversely, the histamine H(1) agonist, TMPH (2-(3-trifluoromethylphenyl)histamine), exclusively evoked an increase in I(sc), whereas the histamine H(2) agonist, amthamine, evoked only a decrease in I(sc) suggesting that stimulation of different types of histamine receptors is responsible for the two phases of the response evoked by native histamine. Histamine induces the opening of glibenclamide-sensitive Cl(-) channels and of charybdotoxin-sensitive K(+) channels in the apical membrane as demonstrated by experiments at basolaterally depolarized epithelia. A further action site is the basolateral membrane, because histamine stimulates a charybdotoxin- and tetrapentylammonium-sensitive K(+) conductance in this membrane as observed in tissues, in which the apical membrane was permeabilized with an ionophore, nystatin. The increase in I(sc) evoked by histamine was blocked after depletion of intracellular Ca(2+) stores with cyclopiazonic acid and after blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors, suggesting a release of stored Ca(2+). This was confirmed by the observation that the histamine H(1) agonist TMPH induced an increase in the fura-2 ratio signal of epithelial cells within isolated colonic crypts. Consequently, the mediator histamine seems to stimulate both histamine H(1) and H(2) receptors, from which the former seems to be prominently involved in the induction of epithelial chloride secretion.
Collapse
Affiliation(s)
- Gerhard Schultheiss
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Frankfurter Str. 100, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
9
|
Fischer KG, Huber TB, Henger A, Fink E, Schwertfeger E, Rump LC, Pavenstädt H. Eluate derived by extracorporal antibody-based immunoadsorption elevates the cytosolic Ca2+ concentration in podocytes via B2 kinin receptors. Kidney Blood Press Res 2003; 25:384-93. [PMID: 12590202 DOI: 10.1159/000068697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Patients with idiopathic focal segmental glomerulosclerosis (FSGS) often develop a recurrence of the disease after kidney transplantation. In a number of FSGS patients, plasmapheresis and immunoadsorption procedures have been shown to transiently reduce proteinuria and are thought to do this by eliminating a circulating factor. Direct cellular effects of eluates from immunoadsorption procedures on podocytes, the primary target of injury in FSGS, have not yet been reported. METHODS Eluates were derived from antibody-based immunoadsorption of a patient suffering from primary FSGS, a patient with systemic lupus erythematosus, and a healthy volunteer. The cytosolic free Ca(2+) concentration ([Ca(2+)](i)) of differentiated podocytes was measured by single-cell fura-2 microfluorescence measurements. Free and total immunoreactive kinin levels were measured by radioimmunoassay. RESULTS FSGS eluates increased the [Ca(2+)](i) levels concentration dependently (EC(50) 0.14 mg/ml; n = 3-19). 1 mg/ml eluate increased the [Ca(2+)](i) values reversibly from 82 +/- 12 to 1,462 +/- 370 nmol/l, and then they returned back to 100 +/- 16 nmol/l (n = 19). The eluate-induced increase of [Ca(2+)](i) consisted of an initial Ca(2+) peak followed by a Ca(2+) plateau which depended on the extracellular Ca(2+) concentration. The eluate-induced increase of [Ca(2+)](i) was inhibited by the specific B(2) kinin receptor antagonist Hoe 140 in a concentration-dependent manner (IC(50) 2.47 nmol/l). In addition, prior repetitive application of bradykinin desensitized the effect of eluate on [Ca(2+)](i). A colonic epithelial cell line not reacting to bradykinin did not respond to eluate either (n = 6). Similar to FSGS eluates, the eluate preparations of both the systemic lupus patient and the healthy volunteer led to a biphasic, concentration-dependent [Ca(2+)](i) increase in podocytes which again was inhibited by Hoe 140. Free kinins were detected in all eluate preparations. CONCLUSION The procedure of antibody-based immunoadsorption leads to kinin in the eluate which elevates the [Ca(2+)](i) level of podocytes via B(2) kinin receptors.
Collapse
Affiliation(s)
- Karl-Georg Fischer
- Department of Medicine, Division of Nephrology and General Medicine, University Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
In contrast to the airways, the defects in colonic function in cystic fibrosis (CF) patients are closely related to the defect in CFTR. The gastrointestinal phenotype of CF transgenic mice closely resembles the phenotype in CF patients, which clearly indicates the crucial role of CFTR in colonic Cl- secretion and the absence of an effective compensation. In the colon, stimulation of CFTR Cl- channels involves cAMP- or cGMP-dependent phosphorylation. Exocytosis is not involved. Activation of CFTR leads to coactivation of basolateral KVLQT1-type K+ channels and inhibition of luminal Na+ channels (ENaC). In contrast to cultured cells, Ca2+ does not activate luminal Cl- channels in intact enterocytes. It activates basolateral SK4-type K+ channels and luminal K+ channels, which provide additional driving force for Cl- exit. The magnitude of Cl- secretion, however, completely depends on the presence of at least a residual CFTR function in the luminal membrane. These findings have been clearly demonstrated by Ussing chamber experiments in colon epithelium biopsies of CF and normal individuals: Colonic Cl- secretion in CF patients is variable and reflects the genotype; a complete defect of CFTR is paralleled by the absence of Cl- secretion and unmasks Ca(2+)-regulated K+ channels in the luminal membrane; overabsorption of Na+ in CF reflects the absence of ENaC inhibition by CFTR; and the functional status of CF colon can be mimicked by the complete suppression of cAMP stimulation in enterocytes of healthy individuals.
Collapse
Affiliation(s)
- R Greger
- Physiologisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany.
| |
Collapse
|
11
|
Holliday ND, Cox HM. Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line. Br J Pharmacol 1999; 126:269-79. [PMID: 10051145 PMCID: PMC1565781 DOI: 10.1038/sj.bjp.0702270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete populations of basolateral K+ channels gated by either Ca2+ or cyclic AMP, but that the Cl- permeability of the apical membrane may limit their combined effects on electrogenic Cl- secretion. In addition, CCh activates a Ba2+-sensitive apical K+ conductance leading to electrogenic K+ transport. Both agents may also modulate HCO3- secretion through a mechanism at least partially dependent on carbonic anhydrase.
Collapse
Affiliation(s)
- Nicholas D Holliday
- Division of Pharmacology & Therapeutics, GKT, St. Thomas's Medical School, Lambeth Palace Road, London SE1 7EH
| | - Helen M Cox
- Division of Pharmacology & Therapeutics, GKT, St. Thomas's Medical School, Lambeth Palace Road, London SE1 7EH
- Author for correspondence:
| |
Collapse
|
12
|
Bleich M, Riedemann N, Warth R, Kerstan D, Leipziger J, Hör M, Driessche WV, Greger R. Ca2+ regulated K+ and non-selective cation channels in the basolateral membrane of rat colonic crypt base cells. Pflugers Arch 1996; 432:1011-22. [PMID: 8781195 DOI: 10.1007/s004240050229] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that a new type of K+ channel, present in the basolateral membrane of the colonic crypt base (blm), is necessary for cAMP-activated Cl- secretion. Under basal conditions, and when stimulated by carbachol (CCH) alone, this channel is absent. In the present patch clamp-study we examined the ion channels present in the blm under cell-attached and in cell-excised conditions. In cell-attached recordings with NaCl-type solution in the pipette we measured activity of a K+ channel of 16 +/- 0.3 pS (n = 168). The activity of this channel was sharply increased by CCH (0. 1 mmol/l, n = 26). Reduction of extracellular Ca2+ to 0.1 mmol/l (n = 34) led to a reversible reduction of activity of this small channel (SKCa). It was also inactivated by forskolin (5 micromol/l, n = 38), whilst the K+ channel noise caused by the very small K+ channel increased. Activity of non-selective cation channels (NScat) was rarely observed immediately prior to the loss of attached basolateral patches and routinely in excised patches. The NScat, with a mean conductance of 49 +/- 1.0 pS (n = 96), was Ca2+ activated and required >10 micromol/l Ca2+ (cytosolic side = cs). It was reversibly inhibited by ATP (<1 mmol/l, n = 13) and by 3',5-dichloro-diphenylamine-2-carboxylate (10-100 micromol/l, n = 5). SKCa was also Ca2+ dependent in excised inside-out basolateral patches. Its activity stayed almost unaltered down to 1 micromol/l (cs) and then fell sharply to almost zero at 0.1 micromol/l Ca2+ (cs, n = 12). SKCa was inhibited by Ba2+ (n = 31) and was charybdotoxin sensitive (1 nmol/l) in outside-out basolateral patches (n = 3). Measurements of the Ca2+ activity ([Ca2+]i) in these cells using fura-2 indicated that forskolin and depolarization, induced by an increase in bath K+ concentration to 30 mmol/l, reduced [Ca2+]i markedly (n = 8-10). Hyperpolarization had the opposite effect. The present data indicate that the blm of these cells contains a small-conductance Ca2+-sensitive K+ channel. This channel is activated promptly by very small increments in [Ca2+]i and is inactivated by a fall in [Ca2+]i induced by forskolin.
Collapse
Affiliation(s)
- M Bleich
- Physiologisches Institut der Albert-Ludwigs-Universität, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|