1
|
Borysiuk K, Ostaszewska-Bugajska M, Kryzheuskaya K, Gardeström P, Szal B. Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. PLANT CELL REPORTS 2022; 41:2393-2413. [PMID: 36242617 PMCID: PMC9700585 DOI: 10.1007/s00299-022-02931-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Elevated methylglyoxal levels contribute to ammonium-induced growth disorders in Arabidopsis thaliana. Methylglyoxal detoxification pathway limitation, mainly the glyoxalase I activity, leads to enhanced sensitivity of plants to ammonium nutrition. Ammonium applied to plants as the exclusive source of nitrogen often triggers multiple phenotypic effects, with severe growth inhibition being the most prominent symptom. Glycolytic flux increase, leading to overproduction of its toxic by-product methylglyoxal (MG), is one of the major metabolic consequences of long-term ammonium nutrition. This study aimed to evaluate the influence of MG metabolism on ammonium-dependent growth restriction in Arabidopsis thaliana plants. As the level of MG in plant cells is maintained by the glyoxalase (GLX) system, we analyzed MG-related metabolism in plants with a dysfunctional glyoxalase pathway. We report that MG detoxification, based on glutathione-dependent glyoxalases, is crucial for plants exposed to ammonium nutrition, and its essential role in ammonium sensitivity relays on glyoxalase I (GLXI) activity. Our results indicated that the accumulation of MG-derived advanced glycation end products significantly contributes to the incidence of ammonium toxicity symptoms. Using A. thaliana frostbite1 as a model plant that overcomes growth repression on ammonium, we have shown that its resistance to enhanced MG levels is based on increased GLXI activity and tolerance to elevated MG-derived advanced glycation end-product (MAGE) levels. Furthermore, our results show that glyoxalase pathway activity strongly affects cellular antioxidative systems. Under stress conditions, the disruption of the MG detoxification pathway limits the functioning of antioxidant defense. However, under optimal growth conditions, a defect in the MG detoxification route results in the activation of antioxidative systems.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
3
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
4
|
Yan G, Xiao X, Wang N, Zhang F, Gao G, Xu K, Chen B, Qiao J, Wu X. Genome-wide analysis and expression profiles of glyoxalase gene families in Chinese cabbage (Brassica rapa L). PLoS One 2018; 13:e0191159. [PMID: 29324881 PMCID: PMC5764358 DOI: 10.1371/journal.pone.0191159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
The glyoxalase pathway is composed of glyoxalase I (GLYI) and glyoxalase II (GLYII) and is responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione. The two glyoxalase enzymes play a crucial role in stress tolerance in various plant species. Recently, the GLY gene families have well been analyzed in Arabidopsis, rice and soybean, however, little is known about them in Chinese cabbage (Brassica rapa). Here, 16 BrGLYI and 15 BrGLYII genes were identified in the B. rapa genome, and the BrGLYI and BrGLYII proteins were both clustered into five subfamilies. The classifications, chromosomal distributions, gene duplications, exon–intron structures, localizations, conserved motifs and promoter cis-elements were also predicted and analyzed. In addition, the expression pattern of these genes in different tissues and their response to biotic and abiotic stresses were analyzed using publicly available data and a quantitative real-time PCR analysis (RT-qPCR). The results indicated that the expression profiles of BrGLY genes varied among different tissues. Notably, a number of BrGLY genes showed responses to biotic and abiotic stress treatments, including Plasmodiophora brassicae infection and various heavy metal stresses. Taken together, this study identifies BrGLYI and BrGLYII gene families in B. rapa and offers insight into their roles in plant development and stress resistance, especially in heavy metal stress tolerance and pathogen resistance.
Collapse
Affiliation(s)
- Guixin Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xin Xiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Nian Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Fugui Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Guizhen Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Kun Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Biyun Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Jiangwei Qiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18010200. [PMID: 28117669 PMCID: PMC5297830 DOI: 10.3390/ijms18010200] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of these systems towards stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
6
|
Yan G, Lv X, Gao G, Li F, Li J, Qiao J, Xu K, Chen B, Wang L, Xiao X, Wu X. Identification and Characterization of a Glyoxalase I Gene in a Rapeseed Cultivar with Seed Thermotolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:150. [PMID: 26909093 PMCID: PMC4754733 DOI: 10.3389/fpls.2016.00150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/28/2016] [Indexed: 05/07/2023]
Abstract
Glyoxalase I (GLYI) is a ubiquitous enzyme in all organisms that catalyzes the conversion of the potent cytotoxin methylglyoxal to S-D-lactoylglutathione. Although many reports suggest the importance of GLYI in the plant response to stress, its function in seeds requires further study. Here, we identified a heat-induced GLYI from Brassica napus seeds, BnGLYI, using a comparative proteomics approach. Two-dimensional gel analyses revealed that BnGLYI protein expression upon heat treatment was significantly elevated in thermotolerant seeds but was diminished in heat-sensitive seeds. The BnGLYI-2 and BnGLYI-3 genes from the heat-sensitive and thermotolerant cultivars, respectively, were characterized, and analyzed. Only two amino acid residue variations were found between the amino acid sequences of the two genes. Moreover, overexpressing BnGLYI-3 in yeast cells enhanced tolerance to heat and cold stress and significantly increased GLYI activity compared to overexpressing BnGLYI-2. In addition, BnGLYI-3 transformants showed enhanced superoxide dismutase activities under heat and cold treatment, whereas these activities were diminished for BnGLYI-2 transformants. Taken together, these results indicate that overexpression of the BnGLYI-3 gene imparts thermotolerance and cold tolerance in yeast and that the variations in BnGLYI-3 may play an important role in the responses to temperature stresses.
Collapse
|
7
|
Abstract
The glyoxalase pathway is required for detoxification of cytotoxic metabolite MG (methylglyoxal) that would otherwise increase to lethal concentrations under adverse environmental conditions. Since its discovery 100 years ago, several roles have been assigned to glyoxalases, but, in plants, their involvement in stress response and tolerance is the most widely accepted role. The plant glyoxalases have emerged as multigene family and this expansion is considered to be important from the perspective of maintaining a robust defence machinery in these sessile species. Glyoxalases are known to be differentially regulated under stress conditions and their overexpression in plants confers tolerance to multiple abiotic stresses. In the present article, we review the importance of glyoxalases in plants, discussing possible roles with emphasis on involvement of the glyoxalase pathway in plant stress tolerance.
Collapse
|
8
|
Scavenging Systems for Reactive Carbonyls in the CyanobacteriumSynechocystissp. PCC 6803. Biosci Biotechnol Biochem 2014; 77:2441-8. [DOI: 10.1271/bbb.130554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Kaur C, Vishnoi A, Ariyadasa TU, Bhattacharya A, Singla-Pareek SL, Sopory SK. Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci Rep 2013; 3:3076. [PMID: 24220130 PMCID: PMC3826101 DOI: 10.1038/srep03076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/04/2013] [Indexed: 02/05/2023] Open
Abstract
Glyoxalase pathway plays an important role in stress adaptation and many clinical disorders. The first enzyme of this pathway, glyoxalase I (GlxI), uses methylglyoxal as a substrate and requires either Ni(II)/Co(II) or Zn(II) for activity. Here we have investigated the origin of different metal ion specificities of GlxI and subsequent pattern of inheritance during evolution. Our results suggest a primitive origin of single-domain Ni dependent GlxI [Ni-GlxI]. This subsequently evolved into Zn activated GlxI [Zn-GlxI] in deltaproteobacteria. However, origin of eukaryotic Zn-GlxI is different and can be traced to GlxI from Candidatus pelagibacter and Sphingomonas. In eukaryotes GlxI has evolved as two-domain protein but the corresponding Zn form is lost in plants/higher eukaryotes. In plants gene expansion has given rise to multiple two-domain Ni-GlxI which are differentially regulated under abiotic stress conditions. Our results suggest that different forms of GlxI have evolved to help plants adapt to stress.
Collapse
Affiliation(s)
- Charanpreet Kaur
- 1] International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Marg 110 067 New Delhi, India [2] [3]
| | | | | | | | | | | |
Collapse
|
10
|
Wu C, Ma C, Pan Y, Gong S, Zhao C, Chen S, Li H. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2013; 126:415-25. [PMID: 23203352 DOI: 10.1007/s10265-012-0532-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/20/2012] [Indexed: 05/06/2023]
Abstract
Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chuan Wu
- College of Life Sciences, Heilongjiang University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/872875] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.
Collapse
|