1
|
Asif R, Siddique MH, Hayat S, Rasul I, Nadeem H, Faisal M, Waseem M, Zakki SA, Zitouni A, Muzammil S. Efficacy of Saccharothrix algeriensis NRRL B-24137 to suppress Fusarium oxysporum f.sp. vasinfectum induced wilt disease in cotton. PeerJ 2023; 11:e14754. [PMID: 36778156 PMCID: PMC9910192 DOI: 10.7717/peerj.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/27/2022] [Indexed: 02/08/2023] Open
Abstract
Fusarium cotton wilt is a devastating disease of the cotton crop throughout the world, caused by Fusarium oxysporum f.sp. vasinfectum (FOV). Chemical control has many side effects, so, biological controls have been widely used for the management of Fusarium wilt. This study aimed to investigate the possible use of an actinomycetes Saccharothrix algeriensis (SA) NRRL B-24137 to control FOV. To access in-vitro anti-Fusarium ability of SA NRRL B-24137, dual culture assay, spore germination and seed germination tests were carried out. Following in-vitro investigations, several pot tests in a greenhouse environment were used to evaluate the biological control potential of SA NRRL B-24137 against FOV. Dual culture assay and spore germination revealed that SA NRRL B-24137 showed significant anti-Fusarium activity.During spore germination 87.77% inhibition of spore germination were observed. In pot experiments, SA NRRL B-24137 primed cotton seeds resulted in a 74.0% reduction in disease incidence. In soil there was a significant reduction in FOV spores in the presence of SA NRRL B-24137. Positive correlation was also observed on different concentrations of SA NRRL B-24137 towards FOV reduction. The results of this study showed that SA NRRL B-24137 has the potential to be employed as a biocontrol agent against Fusarium cotton wilt, improving cotton growth characteristics and yield.
Collapse
Affiliation(s)
- Rizwan Asif
- Department of Microbiology, Government College University, Faisalabad, Pakistan,Department of Eastern Medicine and Surgery, Qarshi University Lahore, Lahore, Pakistan
| | | | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Faisal
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - Muhammad Waseem
- Department of Environmental Science, Government College University, Faisalabad, Pakistan
| | - Shahbaz Ahmad Zakki
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
2
|
Sarkar AK, Sadhukhan S. Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e13845. [PMID: 36546667 DOI: 10.1111/ppl.13845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plants produce a large range of structurally varied low molecular weight secondary metabolites, which evaporate, known as volatile organic compounds (VOCs). Several of them are emitted in response to biotic stress as a defensive measure against pathogen attacks. Arbuscular Mycorrhizal Fungi (AMFs) can change the VOC pattern in parts of the plant and may promote plant defense via direct or indirect mechanisms. Mycorrhization of plants positively affects plant immunization along with growth and yield. The presence of AMF may raise the concentration of phenolic compounds and the activity of critical defense-related enzymes. AMF-induced changes in plant chemistry and associated volatile emissions lead to stronger immunity against pathogenic microorganisms. Despite substantial research into the origins of diversity in VOC-mediated plant communication, very little is known about the mechanism of influence of several AMFs on plant VOC emissions and modulation of plant immunization. Moreover, the molecular mechanism for VOC sensing in plants and mycorrhizal association is still unclear. In the present review, we have presented an up-to-date understanding of the cross-talk of AMF and VOC patterns in plants and the subsequent modulation of resistance against microbial pathogens.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
3
|
Ye S, Yan R, Li X, Lin Y, Yang Z, Ma Y, Ding Z. Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Front Microbiol 2022; 13:1025727. [PMID: 36386722 PMCID: PMC9651087 DOI: 10.3389/fmicb.2022.1025727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause serious damage to agricultural production worldwide. Currently, because of a lack of effective and environmental-friendly chemical nematicides, the use of microbial nematicides has been proposed as an eco-friendly management strategy to control PPNs. A nematicidal bacterium GC-7 was originally isolated from the rice rhizosphere, and was identified as Pseudomonas rhodesiae. Treatment with the fermentation supernatant of GC-7 in vitro showed a highly lethal effect on second-stage juveniles of Meloidogyne graminicola, with the mortality rate increasing to 95.82% at 24 h and egg hatching significantly inhibited, with a hatch inhibition rate of 60.65% at 96 h. The bacterium significantly reduced the level of damage caused by M. graminicola infestations to rice (Oryza sativa) in greenhouse and field experiments. Under greenhouse conditions, the GC-7 culture efficiently reduced the gall index and nematode population in rice roots and soils, as well as inhibited nematode development compared to the control. Under field conditions, application of the GC-7 consistently showed a high biocontrol efficacy against M. graminicola (with a control efficiency of 58.85%) and promoted plant growth. In addition, the inoculation of GC-7 in M. graminicola-infested rice plant fields significantly suppressed final nematode populations in soil under natural conditions. Furthermore, activities of plant defense-related enzymes, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase were remarkably increased in plant roots treated with GC-7 compared with roots that were challenge to M. graminicola. Moreover, quantitative real-time PCR analysis showed that GC-7 significantly enhanced the expression of defense genes (PR1a, WRKY45, JaMYB, AOS2, ERF1, and ACS1) related to salicylic acid, jasmonic acid, and ethylene signaling pathways in rice roots after inoculation with GC-7 at different levels. The results indicated that GC-7 could be an effective biological component in the integrated management of M. graminicola infecting rice.
Collapse
Affiliation(s)
- Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Rui Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinwen Li
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Yufeng Lin
- Agriculture and Rural Department of Hunan Province, Plant Protection and Inspection Station, Changsha, Hunan, China
| | - Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
| | - Yihang Ma
- Department of Chemical Metrology and Reference Materials, Hunan Institute of Metrology and Test, Changsha, Hunan, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, Hunan, China
- *Correspondence: Zhong Ding,
| |
Collapse
|
4
|
Garcés-Fiallos FR, de Quadros FM, Ferreira C, de Borba MC, Bouzon ZL, Barcelos-Oliveira JL, Stadnik MJ. Changes in xylem morphology and activity of defense-related enzymes are associated with bean resistance during Fusarium oxysporum colonization. PROTOPLASMA 2022; 259:717-729. [PMID: 34406473 DOI: 10.1007/s00709-021-01691-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Genetic resistance is the main strategy to control Fusarium wilt in common bean. Despite this, few studies have focused on defense mechanisms involved in bean resistance to Fusarium oxysporum f. sp. phaseoli (Fop). Thus, the present study aimed to investigate the changes in xylem morphology and involvement of phenylpropanoid compounds and their biosynthetic enzymes in bean resistance against Fop. Uirapuru and UFSC-01 genotypes characterized, respectively, as susceptible and resistant were used. In roots and hypocotyls, guaiacol peroxidase (GPX), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO) activities were determined at 0, 1, 2, 3, 4, 5, and 6 days after inoculation (dai), and flavonoids, total phenolics, and lignin content were quantified at 0, 3, and 6 dai. Cross sections of taproots and hypocotyls were examined under epifluorescence (at 1, 3, and 6 dai) and transmission electron (at 6 dai) microscopic to analyze the morphology of xylem cell walls. Overall, there was an increase in the activity of all studied enzymes in resistant bean plants, mainly during advanced colonization stages. Modifications in xylem morphology were more intense in roots of resistant genotype resulting in an increase of occluded cells, organelles, and cell wall strengthening. This study provides evidence that bean resistance is associated with increased phenylpropanoid enzymatic activity and cell wall reinforcement of some xylem cells.
Collapse
Affiliation(s)
- Felipe R Garcés-Fiallos
- Faculty of Agronomic Engineering, Technical University of Manabí, Experimental Campus La Teodomira, Km 13, Santa Ana, Manabí, Ecuador.
- Laboratory of Phytopathology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| | - Felipe M de Quadros
- Laboratory of Phytopathology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| | - Chirle Ferreira
- Plant Cell Biology Laboratory, Federal University of Santa Catarina, Florianópolis, SC, 88049-900, Brazil
| | - Marlon C de Borba
- Laboratory of Phytopathology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Zenilda L Bouzon
- Plant Cell Biology Laboratory, Federal University of Santa Catarina, Florianópolis, SC, 88049-900, Brazil
| | - Jorge L Barcelos-Oliveira
- Rural Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Marciel J Stadnik
- Laboratory of Phytopathology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
5
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Zehra A, Swapnil P. Role of Microbial Bioagents as Elicitors in Plant Defense Regulation. TRANSCRIPTION FACTORS FOR BIOTIC STRESS TOLERANCE IN PLANTS 2022:103-128. [DOI: 10.1007/978-3-031-12990-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
6
|
Pu C, Ge Y, Yang G, Zheng H, Guan W, Chao Z, Shen Y, Liu S, Chen M, Huang L. Arbuscular mycorrhizal fungi enhance disease resistance of Salvia miltiorrhiza to Fusarium wilt. FRONTIERS IN PLANT SCIENCE 2022; 13:975558. [PMID: 36531366 PMCID: PMC9753693 DOI: 10.3389/fpls.2022.975558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 05/04/2023]
Abstract
Salvia miltiorrhiza Bunge (Danshen in Chinese) is vulnerable to Fusarium wilt, which severely affects the quality of the crude drug. Mycorrhizal colonization enhances resistance to fungal pathogens in many plant species. In this study, pre-inoculation of S. miltiorrhiza with the arbuscular mycorrhizal fungi (AMF) Glomus versiforme significantly alleviated Fusarium wilt caused by Fusarium oxysporum. Mycorrhizal colonization protected S. miltiorrhiza from pathogen infection, thereby preventing a loss of biomass and photosynthesis. There were greater defense responses induced by pathogen infection in AMF pre-inoculated plants than those in non-treated plants. AMF pre-inoculation resulted in systemic responses upon pathogen inoculation, including significant increases in the protein content and activities of phenylalanine ammonia-lyase (PAL), chitinase, and β-1,3-glucanase in S. miltiorrhiza roots. In addition, mycorrhizal pre-inoculation caused upregulation of defense-related genes, and jasmonic acid (JA) and salicylic acid (SA) signaling pathway genes after pathogen infection. The above findings indicate that mycorrhizal colonization enhances S. miltiorrhiza resistance against F. oxysporum infection by enhancing photosynthesis, root structure, and inducing the expression of defense enzymes and defense-related genes on the other hand.
Collapse
Affiliation(s)
- Chunjuan Pu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Ge
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Zheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insert Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ye Shen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meilan Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Meilan Chen, ; Luqi Huang,
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Meilan Chen, ; Luqi Huang,
| |
Collapse
|
7
|
Yi Y, Shan Y, Liu S, Yang Y, Liu Y, Yin Y, Hou Z, Luan P, Li R. Antagonistic Strain Bacillus amyloliquefaciens XZ34-1 for Controlling Bipolaris sorokiniana and Promoting Growth in Wheat. Pathogens 2021; 10:pathogens10111526. [PMID: 34832680 PMCID: PMC8619621 DOI: 10.3390/pathogens10111526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Common root rot, caused by Bipolaris sorokiniana, is one of the most prevalent diseases of wheat and has led to major declines in wheat yield and quality worldwide. Here, strain XZ34-1 was isolated from soil and identified as Bacillus amyloliquefaciens based on the morphological, physiological, biochemical characteristics and 16S rDNA sequence. Culture filtrate (CF) of strain XZ34-1 showed a high inhibition rate against B.sorokiniana and had a broad antifungal spectrum. It also remarkably inhibited the mycelial growth and spore germination of B. sorokiniana. In pot control experiments, the incidence and disease index of common root rot in wheat seedlings were decreased after treatment with CF, and the biological control efficacy was significant, up to 78.24%. Further studies showed XZ34-1 could produce antifungal bioactive substances and had the potential of promoting plant growth. Lipopeptide genes detection with PCR indicated that strain XZ34-1 may produce lipopeptides. Furthermore, activities of defense-related enzymes were enhanced in wheat seedlings after inoculation with B.sorokiniana and treatment with CF, which showed induced resistance could be produced in wheat to resist pathogens. These results reveal that strain XZ34-1 is a promising candidate for application as a biological control agent against B.sorokiniana.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
- Correspondence: (Y.Y.); (R.L.); Tel.: +86-371-67756513 (Y.Y. & R.L.)
| | - Youtian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Shifei Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
| | - Yanhui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yanan Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
- Correspondence: (Y.Y.); (R.L.); Tel.: +86-371-67756513 (Y.Y. & R.L.)
| |
Collapse
|
8
|
Patel RR, Patel DD, Bhatt J, Thakor P, Triplett LR, Thakkar VR. Induction of pre-chorismate, jasmonate and salicylate pathways by Burkholderia sp. RR18 in peanut seedlings. J Appl Microbiol 2021; 131:1417-1430. [PMID: 33522007 DOI: 10.1111/jam.15019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
AIMS To characterize the mechanisms by which bacteria in the peanut rhizosphere promote plant growth and suppress Aspergillus niger, the fungus that causes collar rot of peanut. METHODS AND RESULTS In all, 131 isolates cultured from the peanut rhizosphere were assayed for growth promotion in a seedling germination assay. The most effective isolate, RR18, was identified as Burkholderia sp. by 16S sequencing analysis. RR18 reduced collar rot disease incidence and increased the germination rate and biomass of peanut seeds, and had broad-spectrum antifungal activity. Quantitative analyses showed that RR18 induced long-lasting accumulation of jasmonic acid, salicylic acid and phenols, and triggered the activity of six defence enzymes related to these changes. Comparative proteomic analysis of treated and untreated seedlings revealed a clear induction of four abundant proteins, including a member of the pre-chorismate pathway, a regulator of clathrin-coated vesicles, a transcription factor and a hypothetical protein. CONCLUSION Burkholderia sp. RR18 promotes peanut growth and disease resistance, and stably induces two distinct defence pathways associated with systemic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that a strain of the Burkholderia cepacia complex can elicit both salicylic- and jasmonic-acid-mediated defences, in addition to having numerous other beneficial properties.
Collapse
Affiliation(s)
- Ravikumar R Patel
- P. G. Department of Biosciences, Sardar Patel University, Gujarat, India.,Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Disha D Patel
- P. G. Department of Biosciences, Sardar Patel University, Gujarat, India
| | - Jaimika Bhatt
- P. G. Department of Biosciences, Sardar Patel University, Gujarat, India
| | - Parth Thakor
- P. G. Department of Biosciences, Sardar Patel University, Gujarat, India
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel University, Gujarat, India
| |
Collapse
|
9
|
Liu A, Zhang P, Bai B, Bai F, Jin T, Ren J. Volatile Organic Compounds of Endophytic Burkholderia pyrrocinia Strain JK-SH007 Promote Disease Resistance in Poplar. PLANT DISEASE 2020; 104:1610-1620. [PMID: 32271644 DOI: 10.1094/pdis-11-19-2366-re] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) play important roles in the regulation of plant growth and pathogen resistance. However, little is known about the influence of VOCs released from endophytic strains (Burkholderia pyrrocinia strain JK-SH007) on controlling pathogens or inducing systemic resistance in poplar. In this study, we found that VOCs produced by strain JK-SH007 inhibit three poplar canker pathogens (Cytospora chrysosperma, Phomopsis macrospora, and Fusicoccum aesculi) and promote defense enzyme activity and malondialdehyde (MDA) and total phenol (TP) accumulation. Thirteen kinds of VOC components were identified using the solid-phase microextraction combined with gas chromatography-mass spectrometry method. Dimethyl disulfide (DMDS) accounted for the largest proportion of these VOCs. Treatments of poplar seedlings with different volumes of VOC standards (DMDS, benzothiazole, dimethylthiomethane, and phenylacetone) showed that DMDS had the greatest effects on various defense enzyme activities and MDA and TP accumulation. We also found that the inhibitory effect of the VOCs on the three pathogens was gradually enhanced with increasing standard volume. Moreover, the treatment of samples with DMDS significantly reduced the severity and development of the disease caused by three poplar canker pathogens. Comparative transcriptomics analysis of poplar seedlings treated with DMDS showed that there were 1,586 differentially expressed genes in the leaves and stems, and quantitative PCR showed that the gene expression trends were highly consistent with the transcriptome sequencing results. The most significant transcriptomic changes induced by VOCs were related to hormone signal transduction, transcriptional regulation of plant-pathogen interactions, and energy metabolism. Moreover, 137 transcription factors, including members of the ethylene response factor, NAC, WRKY, G2-like, and basic helix-loop-helix protein families, were identified to be involved in the VOC-induced process. This study elucidates the resistance induced by Burkholderia pyrrocinia strain JK-SH007 to poplar canker at the molecular level and can make possible a new method for the comprehensive prevention and control of poplar disease.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Pengfei Zhang
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Bianxia Bai
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Fenglin Bai
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Tingting Jin
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| | - Jiahong Ren
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China
| |
Collapse
|
10
|
Jamali H, Sharma A, Roohi, Srivastava AK. Biocontrol potential of
Bacillus subtilis
RH5 against sheath blight of rice caused by
Rhizoctonia solani. J Basic Microbiol 2019; 60:268-280. [DOI: 10.1002/jobm.201900347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hena Jamali
- ICAR National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Anjney Sharma
- ICAR National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - Roohi
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Alok Kumar Srivastava
- ICAR National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| |
Collapse
|
11
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
12
|
Liu F, Xie L, Yao Z, Zhou Y, Zhou W, Wang J, Sun Y, Gong C. Caragana korshinskii phenylalanine ammonialyase is up-regulated in the phenylpropanoid biosynthesis pathway in response to drought stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1623718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Furong Liu
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Lifang Xie
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Zhenye Yao
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Yulu Zhou
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Wenfei Zhou
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Junhui Wang
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Yingying Sun
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Chunmei Gong
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| |
Collapse
|
13
|
Patil S, Paradeshi J, Chaudhari B. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions. J Basic Microbiol 2016; 56:889-99. [PMID: 27213894 DOI: 10.1002/jobm.201600008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/18/2016] [Indexed: 01/13/2023]
Abstract
Charcoal rot severely limits the soybean crop yield under saline conditions. The present studies focus on biocontrol and plant growth promoting potential of phenazine producing moderately halotolerant Pseudomonas aeruginosa (GS-33) in soybean under saline soil conditions. A marine isolate; GS-33 was identified as P. aeruginosa based on polyphasic characterization. This strain showed potent in vitro biocontrol activity against charcoal rot causing fungus Macrophomina phaseolina. It was capable of producing phenazine-1-carboxylic acid even at elevated salt concentrations. Moreover, GS-33 possessed other biocontrol traits like production of siderophores, HCN and protease under saline conditions. Multiple traits for plant growth promotion such as synthesis of IAA, NH3 , and solubilization of phosphate were also exhibited by GS-33. Plant growth promoting and biocontrol control potentials of GS-33 were evaluated by pot assay under saline soil conditions. Higher biomass and chlorophyll content were observed in GS-33 treated seedlings. A greater reduction in charcoal rot caused by fungal pathogens under both normal and saline soil conditions in GS-33 treated seedlings was observed. In a nut shell, phenazine producing halotolerant strain GS-33 could mitigate saline soil conditions (abiotic stress) and infestation of M. phaseolina (biotic stress) in soybean.
Collapse
Affiliation(s)
- Sandeep Patil
- School of Life Sciences, North Maharashtra University, Jalgaon, India
| | | | - Bhushan Chaudhari
- School of Life Sciences, North Maharashtra University, Jalgaon, India
| |
Collapse
|
14
|
Salla TD, Astarita LV, Santarém ER. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea. PLANTA 2016; 243:1055-1070. [PMID: 26794965 DOI: 10.1007/s00425-015-2460-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.
Collapse
Affiliation(s)
- Tamiris D Salla
- Laboratory of Plant Biotechnology, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, 12C, sala 213, Porto Alegre, RS, 90619-900, Brazil
| | - Leandro V Astarita
- Laboratory of Plant Biotechnology, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, 12C, sala 213, Porto Alegre, RS, 90619-900, Brazil
| | - Eliane R Santarém
- Laboratory of Plant Biotechnology, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, 12C, sala 213, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|