1
|
Plant Mitochondria are a Riddle Wrapped in a Mystery Inside an Enigma. J Mol Evol 2021; 89:151-156. [PMID: 33486550 DOI: 10.1007/s00239-020-09980-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022]
Abstract
A fundamental paradox motivates the study of plant mitochondrial genomics: the mutation rate is very low (lower than in the nucleus) but the rearrangement rate is high. A landmark paper published in Journal of Molecular Evolution in 1988 established these facts and revealed the paradox. Jeffrey Palmer and Laura Herbon did a prodigious amount of work in the pre-genome sequencing era to identify both the high frequency of rearrangements between closely related species, and the low frequency of mutations, observations that have now been confirmed many times by sequencing. This paper was also the first to use molecular data on rearrangements as a phylogenetic trait to build a parsimonious tree. The work was a technical tour-de-force, its findings are still at the heart of plant mitochondrial genomics, and the underlying molecular mechanisms that produce this paradox are still not completely understood.
Collapse
|
2
|
Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:730-746. [PMID: 31856320 DOI: 10.1111/tpj.14658] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
Chloroplast nucleoids are large, compact nucleoprotein structures containing multiple copies of the plastid genome. Studies on structural and quantitative changes of plastid DNA (ptDNA) during leaf development are scarce and have produced controversial data. We have systematically investigated nucleoid dynamics and ptDNA quantities in the mesophyll of Arabidopsis, tobacco, sugar beet, and maize from the early post-meristematic stage until necrosis. DNA of individual nucleoids was quantified by DAPI-based supersensitive epifluorescence microscopy. Nucleoids occurred in scattered, stacked, or ring-shaped arrangements and in recurring patterns during leaf development that was remarkably similar between the species studied. Nucleoids per organelle varied from a few in meristematic plastids to >30 in mature chloroplasts (corresponding to about 20-750 nucleoids per cell). Nucleoid ploidies ranged from haploid to >20-fold even within individual organelles, with average values between 2.6-fold and 6.7-fold and little changes during leaf development. DNA quantities per organelle increased gradually from about a dozen plastome copies in tiny plastids of apex cells to 70-130 copies in chloroplasts of about 7 μm diameter in mature mesophyll tissue, and from about 80 plastome copies in meristematic cells to 2600-3300 copies in mature diploid mesophyll cells without conspicuous decline during leaf development. Pulsed-field electrophoresis, restriction of high-molecular-weight DNA from chloroplasts and gerontoplasts, and CsCl equilibrium centrifugation of single-stranded and double-stranded ptDNA revealed no noticeable fragmentation of the organelle DNA during leaf development, implying that plastid genomes in mesophyll tissues are remarkably stable until senescence.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708, Lublin, Poland
| | - Irina Malinova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Tommaso Pellizzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Thomas Börner
- Institut für Biologie/Molekulare Genetik, Humboldt-Universität zu Berlin, Rhoda Erdmann Haus, Philippstr. 13, D-10115, Berlin, Germany
| | - Reinhold G Herrmann
- Department für Biologie I, Ludwig-Maximilians-Universität München, Bereich Botanik, Menzinger Str. 67, D-80638, Munich, Germany
| |
Collapse
|
3
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
4
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
5
|
Tripathi D, Nam A, Oldenburg DJ, Bendich AJ. Reactive Oxygen Species, Antioxidant Agents, and DNA Damage in Developing Maize Mitochondria and Plastids. FRONTIERS IN PLANT SCIENCE 2020; 11:596. [PMID: 32508860 PMCID: PMC7248337 DOI: 10.3389/fpls.2020.00596] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
Maize shoot development progresses from non-pigmented meristematic cells at the base of the leaf to expanded and non-dividing green cells of the leaf blade. This transition is accompanied by the conversion of promitochondria and proplastids to their mature forms and massive fragmentation of both mitochondrial DNA (mtDNA) and plastid DNA (ptDNA), collectively termed organellar DNA (orgDNA). We measured developmental changes in reactive oxygen species (ROS), which at high concentrations can lead to oxidative stress and DNA damage, as well as antioxidant agents and oxidative damage in orgDNA. Our plants were grown under normal, non-stressful conditions. Nonetheless, we found more oxidative damage in orgDNA from leaf than stalk tissues and higher levels of hydrogen peroxide, superoxide, and superoxide dismutase in leaf than stalk tissues and in light-grown compared to dark-grown leaves. In both mitochondria and plastids, activities of the antioxidant enzyme peroxidase were higher in stalk than in leaves and in dark-grown than light-grown leaves. In protoplasts, the amount of the small-molecule antioxidants, glutathione and ascorbic acid, and catalase activity were also higher in the stalk than in leaf tissue. The data suggest that the degree of oxidative stress in the organelles is lower in stalk than leaf and lower in dark than light growth conditions. We speculate that the damaged/fragmented orgDNA in leaves (but not the basal meristem) results from ROS signaling to the nucleus to stop delivering DNA repair proteins to mature organelles producing large amounts of ROS.
Collapse
|
6
|
Shiogai S, Tamotsu S, Sakai A. C 3-Like Photosynthetic Properties of Senescing Maize Leaves Are Accompanied by Preferential Senescence of Mesophyll Cells. CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saya Shiogai
- Environmental Sciences Course, Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University
| | - Satoshi Tamotsu
- Environmental Sciences Course, Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University
- Biological Sciences Course, Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University
| | - Atsushi Sakai
- Environmental Sciences Course, Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University
- Biological Sciences Course, Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University
| |
Collapse
|
7
|
Cheng N, Lo YS, Ansari MI, Ho KC, Jeng ST, Lin NS, Dai H. Correlation between mtDNA complexity and mtDNA replication mode in developing cotyledon mitochondria during mung bean seed germination. THE NEW PHYTOLOGIST 2017; 213:751-763. [PMID: 27611966 DOI: 10.1111/nph.14158] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/18/2016] [Indexed: 05/11/2023]
Abstract
The currently accepted model of recombination-dependent replication (RDR) in plant mitochondrial DNA (mtDNA) does not clearly explain how RDR progresses and how highly complex mtDNA develops. This study aimed to investigate the correlation between RDR and mtDNA complexity during mitochondrial development in mung bean (Vigna radiata) seed, and the initiation and processing of RDR in plant mitochondria. Flow cytometry, pulsed-field gel electrophoresis, electron microscopy, real-time PCR and biochemical studies were used in this study. The highly dynamic changes in mtDNA complexity correspond to mtDNA RDR activity throughout mitochondrial development. With in vitro freeze-thaw treatment or prolonged in vivo cold incubation, the mtDNA rosette core disappeared and the rosette structure converted to a much longer linear DNA structure. D-loops, Holliday junctions and putative RDR forks often appeared near the rosette cores. We hypothesize that the rosette core may consist of condensed mtDNA and a replication starting sequence, and play an initial and central role in RDR. The satellite cores in the rosette structure may represent the re-initiation sites of mtDNA RDR in the same parental molecule, thereby forming highly complex and giant mitochondrial molecules, representing the RDR intermediates, in vivo.
Collapse
Affiliation(s)
- Ning Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yih-Shan Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Kuo-Chieh Ho
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hwa Dai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
8
|
Oldenburg DJ, Bendich AJ. DNA maintenance in plastids and mitochondria of plants. FRONTIERS IN PLANT SCIENCE 2015; 6:883. [PMID: 26579143 PMCID: PMC4624840 DOI: 10.3389/fpls.2015.00883] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
The DNA molecules in plastids and mitochondria of plants have been studied for over 40 years. Here, we review the data on the circular or linear form, replication, repair, and persistence of the organellar DNA (orgDNA) in plants. The bacterial origin of orgDNA appears to have profoundly influenced ideas about the properties of chromosomal DNA molecules in these organelles to the point of dismissing data inconsistent with ideas from the 1970s. When found at all, circular genome-sized molecules comprise a few percent of orgDNA. In cells active in orgDNA replication, most orgDNA is found as linear and branched-linear forms larger than the size of the genome, likely a consequence of a virus-like DNA replication mechanism. In contrast to the stable chromosomal DNA molecules in bacteria and the plant nucleus, the molecular integrity of orgDNA declines during leaf development at a rate that varies among plant species. This decline is attributed to degradation of damaged-but-not-repaired molecules, with a proposed repair cost-saving benefit most evident in grasses. All orgDNA maintenance activities are proposed to occur on the nucleoid tethered to organellar membranes by developmentally-regulated proteins.
Collapse
|