1
|
Cakmak I, Rengel Z. Humboldt Review: Potassium may mitigate drought stress by increasing stem carbohydrates and their mobilization into grains. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154325. [PMID: 39142140 DOI: 10.1016/j.jplph.2024.154325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Potassium (K) deficiency occurs commonly in crop plants. Optimal K nutrition is particularly important when plants are exposed to stress conditions (especially drought and heat) because a cellular demand for K increases. Low K in plant tissues is known to aggravate the effects of drought stress by impairing the osmoregulation process and the photosynthetic carbon metabolism. However, despite numerous publications about the role of K in enhancing tolerance to drought stress in crop plants, our understanding of the major mechanisms underlying the stress-mitigating effects of K is still limited. This paper summarizes and appraises the current knowledge on the major protective effects of K under drought stress, and then proposes a new K-related drought stress-mitigating mechanism, whereby optimal K nutrition may promote partitioning of carbohydrates in stem tissues and subsequent mobilization of these carbohydrates into developing grain under drought stress. The importance of stem reserves of carbohydrates is based on limited photosynthetic capacity during the grain-filling period under drought conditions due to premature leaf senescence as well as due to impaired assimilate transport from leaves to the developing grains. Plants with a high capacity to store large amounts of soluble carbohydrates in stems before anthesis and mobilize them into grain post-anthesis have a high potential to yield well in dry and hot environments. In practice, particular attention needs to be paid to the K nutritional status of plants grown with limited water supply, especially during grain filling. Because K is the mineral nutrient deposited mainly in stem, a special consideration should be given to stems of crop plants in research dealing with the effects of K on yield formation and stress mitigation.
Collapse
Affiliation(s)
- Ismail Cakmak
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956 Istanbul, Turkey.
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| |
Collapse
|
2
|
Gao H, Li D, Hu H, Zhou F, Yu Y, Wei Q, Liu Q, Liu M, Hu P, Chen E, Song P, Su X, Guan Y, Qiao M, Ru Z, Li C. Regulation of carbohydrate metabolism during anther development in a thermo-sensitive genic male-sterile wheat line. PLANT, CELL & ENVIRONMENT 2024; 47:2410-2425. [PMID: 38517937 DOI: 10.1111/pce.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Bainong sterility (BNS) is a thermo-sensitive genic male sterile wheat line, characterised by anther fertility transformation in response to low temperature (LT) stress during meiosis, the failure of vacuole decomposition and the absence of starch accumulation in sterile bicellular pollen. Our study demonstrates that the late microspore (LM) stage marks the transition from the anther growth to anther maturation phase, characterised by the changes in anther structure, carbohydrate metabolism and the main transport pathway of sucrose (Suc). Fructan is a main storage polysaccharide in wheat anther, and its synthesis and remobilisation are crucial for anther development. Moreover, the process of pollen amylogenesis and the fate of the large vacuole in pollen are closely intertwined with fructan synthesis and remobilisation. LT disrupts the normal physiological metabolism of BNS anthers during meiosis, particularly affecting carbohydrate metabolism, thus determining the fate of male gametophytes and pollen abortion. Disruption of fructan synthesis and remobilisation regulation serves as a decisive event that results in anther abortion. Sterile pollen exhibits common traits of pollen starvation and impaired starch accumulation due to the inhibition of apoplastic transport starting from the LM stage, which is regulated by cell wall invertase TaIVR1 and Suc transporter TaSUT1.
Collapse
Affiliation(s)
- Huanting Gao
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Dongxiao Li
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Haiyan Hu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Feng Zhou
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yongang Yu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qichao Wei
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qili Liu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mingjiu Liu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ping Hu
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Eryong Chen
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Puwen Song
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiaojia Su
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuanyuan Guan
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mei Qiao
- College of Science and Engineering, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhengang Ru
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Chengwei Li
- Henan Engineering Research Centre of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, Henan, China
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Taria S, Arora A, Krishna H, Manjunath KK, Meena S, Kumar S, Singh B, Krishna P, Malakondaiah AC, Das R, Alam B, Kumar S, Singh PK. Multivariate analysis and genetic dissection of staygreen and stem reserve mobilisation under combined drought and heat stress in wheat ( Triticum aestivum L.). Front Genet 2023; 14:1242048. [PMID: 37705611 PMCID: PMC10496116 DOI: 10.3389/fgene.2023.1242048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Abiotic stresses significantly reduce crop yield by adversely affecting many physio-biochemical processes. Several physiological traits have been targeted and improved for yield enhancement in limiting environmental conditions. Amongst them, staygreen and stem reserve mobilisation are two important mutually exclusive traits contributing to grain filling under drought and heat stress in wheat. Henceforth, the present study was carried out to identify the QTLs governing these traits and to identify the superiors' lines through multi-trait genotype-ideotype distance index (MGIDI) Methods: A mapping population consisting of 166 recombinant inbred lines (RILs) developed from a cross between HD3086 and HI1500 was utilized in this study. The experiment was laid down in alpha lattice design in four environmental conditions viz. Control, drought, heat and combined stress (heat and drought). Genotyping of parents and RILs was carried out with 35 K Axiom® array (Wheat breeder array). Results and Discussion: Medium to high heritability with a moderate to high correlation between traits was observed. Principal component analysis (PCA) was performed to derive latent variables in the original set of traits and the relationship of these traits with latent variables.From this study, 14 QTLs were identified, out of which 11, 2, and 1 for soil plant analysis development (SPAD) value, leaf senescence rate (LSR), and stem reserve mobilisation efficiency (SRE) respectively. Quantitative trait loci (QTLs) for SPAD value harbored various genes like Dirigent protein 6-like, Protein FATTY ACID EXPORT 3, glucan synthase-3 and Ubiquitin carboxyl-terminal hydrolase, whereas QTLs for LSR were found to contain various genes like aspartyl protease family protein, potassium transporter, inositol-tetrakisphosphate 1-kinase, and DNA polymerase epsilon subunit D-like. Furthermore, the chromosomal region for SRE was found to be associated with serine-threonine protein kinase. Serine-threonine protein kinases are involved in many signaling networks such as ABA mediated ROS signaling and acclimation to environmental stimuli. After the validation of QTLs in multilocation trials, these QTLs can be used for marker-assisted selection (MAS) in breeding programs.
Collapse
Affiliation(s)
- Sukumar Taria
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shashi Meena
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Biswabiplab Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pavithra Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Badre Alam
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Sedlacko EM, Heuberger AL, Chaparro JM, Cath TY, Higgins CP. Metabolomics reveals primary response of wheat (Triticum aestivum) to irrigation with oilfield produced water. ENVIRONMENTAL RESEARCH 2022; 212:113547. [PMID: 35660401 DOI: 10.1016/j.envres.2022.113547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The reuse of oilfield produced water (PW) for agricultural irrigation has received increased attention for utility in drought-stricken regions. It was recently demonstrated that PW irrigation can affect physiological processes in food crops. However, metabolomic evaluations are important to further discern specific mechanisms of how PW may contribute as a plant-environmental stressor. Herein, the primary metabolic responses of wheat irrigated with PW and matching salinity controls were investigated. Non-targeted gas chromatography mass spectrometry (GC-MS) metabolomics was combined with multivariate analysis and revealed that PW irrigation altered the primary metabolic profiles of both wheat leaf and grain. Over 600 compounds (183 annotated metabolites) were detected that varied between controls (salinity control and tap water) and PW irrigated plants. While some of these changed metabolites are related to salinity stress, over half were found to be unique to PW. The primary metabolites exhibiting changes in abundance in leaf and grain tissues were amines/amino acids, organic acids, and saccharides. Metabolite pathway analysis revealed that amino acid metabolism, sugar metabolism, and nitrogen remobilization are all impacted by PW irrigation, independent of regular plant responses to salinity stress. These data, when combined with prior physiological studies, support a multi-faceted, physio-metabolic response of wheat to the unique stressor imposed by irrigation with PW.
Collapse
Affiliation(s)
- Erin M Sedlacko
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; Analytical Resources Core - Bioanalysis and Omics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
5
|
Agro-Physiologic Responses and Stress-Related Gene Expression of Four Doubled Haploid Wheat Lines under Salinity Stress Conditions. BIOLOGY 2021; 10:biology10010056. [PMID: 33466713 PMCID: PMC7828821 DOI: 10.3390/biology10010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Productivity of wheat can be enhanced using salt-tolerant genotypes. However, the assessment of salt tolerance potential in wheat through agro-physiological traits and stress-related gene expression analysis could potentially minimize the cost of breeding programs and be a powerful way for the selection of the most salt-tolerant genotype. The study evaluated the salt tolerance potential of four doubled haploid lines of wheat and compared them with the check cultivar Sakha-93 using an extensive set of agro-physiologic parameters and salt-stress-related gene expressions. The results indicated that the five genotypes tested displayed reduction in all traits evaluated except the canopy temperature and electrical conductivity, which had the greatest decline occurring in the check cultivar and the least decline in DHL2. The genotypes DHL21 and DHL5 exhibited increased expression rate of salt-stress-related genes under salt stress conditions. The multiple linear regression model and path coefficient analysis showed a coefficient of determination of 0.93. Concluding, the number of spikelets, and/or number of kernels were identified to be unbiased traits for assessing wheat DHLs under salinity conditions, given their contribution and direct impact on the grain yield. Moreover, the two most salt-tolerant genotypes DHL2 and DHL21 can be useful as genetic resources for future breeding programs. Abstract Salinity majorly hinders horizontal and vertical expansion in worldwide wheat production. Productivity can be enhanced using salt-tolerant wheat genotypes. However, the assessment of salt tolerance potential in bread wheat doubled haploid lines (DHL) through agro-physiological traits and stress-related gene expression analysis could potentially minimize the cost of breeding programs and be a powerful way for the selection of the most salt-tolerant genotype. We used an extensive set of agro-physiologic parameters and salt-stress-related gene expressions. Multivariate analysis was used to detect phenotypic and genetic variations of wheat genotypes more closely under salinity stress, and we analyzed how these strategies effectively balance each other. Four doubled haploid lines (DHLs) and the check cultivar (Sakha93) were evaluated in two salinity levels (without and 150 mM NaCl) until harvest. The five genotypes showed reduced growth under 150 mM NaCl; however, the check cultivar (Sakha93) died at the beginning of the flowering stage. Salt stress induced reduction traits, except the canopy temperature and initial electrical conductivity, which was found in each of the five genotypes, with the greatest decline occurring in the check cultivar (Sakha-93) and the least decline in DHL2. The genotypes DHL21 and DHL5 exhibited increased expression rate of salt-stress-related genes (TaNHX1, TaHKT1, and TaCAT1) compared with DHL2 and Sakha93 under salt stress conditions. Principle component analysis detection of the first two components explains 70.78% of the overall variation of all traits (28 out of 32 traits). A multiple linear regression model and path coefficient analysis showed a coefficient of determination (R2) of 0.93. The models identified two interpretive variables, number of spikelets, and/or number of kernels, which can be unbiased traits for assessing wheat DHLs under salinity stress conditions, given their contribution and direct impact on the grain yield.
Collapse
|
6
|
Yang S, Sun X, Jiang X, Wang L, Tian J, Li L, Zhao M, Zhong Q. Characterization of the Tibet plateau Jerusalem artichoke ( Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis. Hereditas 2019; 156:9. [PMID: 30774580 PMCID: PMC6364414 DOI: 10.1186/s41065-019-0086-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/27/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Jerusalem artichoke (Helianthus tuberosus L.) is a characteristic crop in the Qinghai-Tibet Plateau which has rapidly developed and gained socioeconomic importance in recent years. Fructans are abundant in tubers and represent the foundation for their formation, processing and utilization of yield; and are also widely used in new sugar-based materials, bioenergy processing, ecological management, and functional feed. To identify key genes in the metabolic pathway of fructans in Jerusalem artichoke, high-throughput sequencing was performed using Illumina Hi Seq™ 2500 equipment to construct a transcriptome library. RESULTS Qinghai-Tibet Plateau Jerusalem artichoke "Qingyu No.1" was used as the material; roots, stems, leaves, flowers and tubers of Jerusalem artichoke in its flowering stage were mixed into a mosaic of the Jerusalem artichoke transcriptome library, obtaining 63,089 unigenes with an average length of 713.6 bp. Gene annotation through the Nr, Swiss Prot, GO, KOG and KEGG databases revealed 34.95 and 46.91% of these unigenes had similar sequences in the Nr and Swiss Prot databases. The GO classification showed the Jerusalem artichoke unigenes were divided into three ontologies, with a total of 49 functional groups encompassing biological processes, cellular components, and molecular functions. Among them, there were more unigenes involved in the functional groups for cellular processes, metabolic processes, and single-organism processes. 38,999 unigenes were annotated by KOG and divided into 25 categories according to their functions; the most common annotation being general function prediction. A total of 13,878 unigenes (22%) were annotated in the KEGG database, with the largest proportion corresponding to pathways related to carbohydrate metabolism. A total of 12 unigenes were involved in the synthesis and degradation of fructan. Cluster analysis revealed the candidate 12 unigene proteins were dispersed in the 5 major families of proteins involved in fructan synthesis and degradation. The synergistic effect of INV gene is necessary during fructose synthesis and degradation in Jerusalem artichoke tuber development. The sequencing data from the transcriptome of this species can provide a reliable data basis for the identification and assessment of the expression of the members of the INV gene family.A simple sequence repeat (SSR) loci search was performed on the transcriptome data of Jerusalem artichoke, identifying 6635 eligible SSR loci with a large proportion of dinucleotide and trinucleotide repeats, and the most different motifs were repeated 5 times and 6 times. Dinucleotide and trinucleotide repeat motifs were the most frequent, with AG/CT and ACC/GGT repeat motifs accounting for the highest proportion. CONCLUSIONS In this study, a database search of the transcriptome of the Jerusalem artichoke from the Qinghai Tibet Plateau was conducted by high throughput sequencing technology to obtain important transcriptional and SSR loci information. This allowed characterization of the overall expression features of the Jerusalem artichoke transcriptome, identifying the key genes involved in metabolism in this species. In turn, this offers a foundation for further research on the regulatory mechanisms of fructan metabolism in Jerusalem artichoke.
Collapse
Affiliation(s)
- Shipeng Yang
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Xuemei Sun
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Xiaoting Jiang
- Qinghai Higher Vocational & Technical College Institute, Ledu, 810799 China
| | - Lihui Wang
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Jie Tian
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Li Li
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Mengliang Zhao
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| | - Qiwen Zhong
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China
| |
Collapse
|
7
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
8
|
Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteomics 2018; 172:122-142. [DOI: 10.1016/j.jprot.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
9
|
Abedini R, GhaneGolmohammadi F, PishkamRad R, Pourabed E, Jafarnezhad A, Shobbar ZS, Shahbazi M. Plant dehydrins: shedding light on structure and expression patterns of dehydrin gene family in barley. JOURNAL OF PLANT RESEARCH 2017; 130:747-763. [PMID: 28389925 DOI: 10.1007/s10265-017-0941-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/24/2017] [Indexed: 05/08/2023]
Abstract
Dehydrins, an important group of late embryogenesis abundant proteins, accumulate in response to dehydration stresses and play protective roles under stress conditions. Herein, phylogenetic analysis of the dehydrin family was performed using the protein sequences of 108 dehydrins obtained from 14 plant species based on plant taxonomy and protein subclasses. Sub-cellular localization and phosphorylation sites of these proteins were also predicted. The protein features distinguishing these dehydrins categories were identified using various attribute weighting and decision tree analyses. The results revealed that the presence of the S motif preceding the K motif (YnSKn, SKn, and SnKS) was more evident and the YnSKn subclass was more frequent in monocots. In barley, as one of the most drought-tolerant crops, there are ten members of YnSKn out of 13 HvDhns. In promoter regions, six types of abiotic stress-responsive elements were identified. Regulatory elements in UTR sequences of HvDhns were infrequent while only four miRNA targets were found. Furthermore, physiological parameters and gene expression levels of HvDhns were studied in tolerant (HV1) and susceptible (HV2) cultivars, and in an Iranian tolerant wild barley genotype (Spontaneum; HS) subjected to gradual water stress and after recovery duration at the vegetative stage. The results showed the significant impact of dehydration on dry matter, relative leaf water, chlorophyll contents, and oxidative damages in HV2 compared with the other studied genotypes, suggesting a poor dehydration tolerance, and incapability of recovering after re-watering in HV2. Under severe drought stress, among the 13 HvDhns genes, 5 and 10 were exclusively induced in HV1 and HS, respectively. The gene and protein structures and the expression patterns of HvDhns as well as the physiological data consistently support the role of dehydrins in survival and recovery of barley plants from drought particularly in HS. Overall, this information would be helpful for functional characterization of the Dhn family in plants.
Collapse
Affiliation(s)
- Raha Abedini
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran
| | - Farzan GhaneGolmohammadi
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, 277-8562, Japan
| | - Reihaneh PishkamRad
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran
| | - Ehsan Pourabed
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran
| | - Ahad Jafarnezhad
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran
| | - Zahra-Sadat Shobbar
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran.
| | - Maryam Shahbazi
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institutes Campus, Mahdasht Road, Karaj, 3135933151, Iran.
| |
Collapse
|