1
|
Soulé S, Huang K, Mulet K, Mejias J, Bazin J, Truong NM, Kika JL, Jaubert S, Abad P, Zhao J, Favery B, Quentin M. The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism. MOLECULAR PLANT PATHOLOGY 2024; 25:e13491. [PMID: 38961768 PMCID: PMC11222708 DOI: 10.1111/mpp.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.
Collapse
Affiliation(s)
- Salomé Soulé
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Kaiwei Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Karine Mulet
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Joffrey Mejias
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
- Present address:
CIRAD, UMR PHIMMontpellierFrance
| | - Jérémie Bazin
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRS, INRAE, Université Paris Saclay – Evry, Université de ParisGif sur YvetteFrance
| | - Nhat My Truong
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
- Present address:
Vietnamese‐German Center for Medical Research108 Military Central HospitalHa NoiVietnam.
| | - Junior Lusu Kika
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Stéphanie Jaubert
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Pierre Abad
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Bruno Favery
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| | - Michaël Quentin
- INRAE‐Université Côte d'Azur‐CNRS, UMR Institut Sophia AgrobiotechSophia AntipolisFrance
| |
Collapse
|
2
|
Krischer J, König S, Weisheit W, Mittag M, Büchel C. The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1934-1948. [PMID: 35034113 DOI: 10.1093/jxb/erac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
A plant-like cryptochrome of diatom microalgae, CryP, acts as a photoreceptor involved in transcriptional regulation. It contains FAD and 5,10-methenyltetrahydrofolate as chromophores. Here, we demonstrate that the unstructured C-terminal extension (CTE) of CryP has an influence on the redox state of the flavin. In CryP lacking the CTE, the flavin is in the oxidized state (FADox), whereas it is a neutral radical (FADH•) in the full-length protein. When the CTE of CryP is coupled to another diatom cryptochrome that naturally binds FADox, this chimera also binds FADH•. In full-length CryP, FADH• is the most stable redox state and oxidation to FADox is extremely slow, whereas reduction to FADH2 is reversible in the dark in approximately 1 h. We also identified novel interaction partners of this algal CRY and characterized two of them in depth regarding their binding activities. BolA, a putative transcription factor, binds to monomeric and to dimeric CryP via the CTE, independent of the redox state of the flavin. In contrast, an unknown protein, ID42612, which occurs solely in heterokont algae, binds only to CryP dimers. This binding is independent of the CTE and shows slight differences in strength depending on the flavin's redox state.
Collapse
Affiliation(s)
- Julia Krischer
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah König
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Wolfram Weisheit
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Islam N, Krishnan HB, Natarajan S. Quantitative proteomic analyses reveal the dynamics of protein and amino acid accumulation during soybean seed development. Proteomics 2022; 22:e2100143. [PMID: 34825757 DOI: 10.1002/pmic.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022]
Abstract
Using high throughput tandem mass tag (TMT) based tagging technique, we identified 4172 proteins in three developmental stages: early, mid, and late seed filling. We mapped the identified proteins to metabolic pathways associated with seed filling. The elevated abundance of several kinases was observed from the early to mid-stages of seed filling, indicating that protein phosphorylation was a significant event during this period. The early to late seed filling stages were characterized by an increased abundance of proteins associated with the cell wall, oil, and vacuolar-related processes. Among the seed storage proteins, 7S (β-subunit) and 11S (Gy3, Gy4, Gy5) steadily increased in abundance during early to late stages of seed filling, whereas 2S albumin exhibited a decrease in abundance during the same period. An increased abundance of proteases, senescence-associated proteins, and oil synthesis proteins was observed from the mid to late seed filling stages. The mid to late stages of seed filling was also characterized by a lower abundance of transferases, transporters, Kunitz family trypsin, and protease inhibitors. Two enzymes associated with methionine synthesis exhibited lower abundance from early to late stages. This study unveiled several essential enzymes/proteins related to amino acid and protein synthesis and their accumulation during seed development. All data can be accessed through this link: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=38784ecbd0854bb3801afc0d89056f84. (Accession MSV000087577).
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, Maryland, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA Agricultural Research Service, University of Missouri, Columbia, Missouri, USA
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, Maryland, USA
| |
Collapse
|
4
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Pankratenko AV, Atabekova AK, Morozov SY, Solovyev AG. Membrane Contacts in Plasmodesmata: Structural Components and Their Functions. BIOCHEMISTRY (MOSCOW) 2020; 85:531-544. [DOI: 10.1134/s0006297920050028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Morozov SY, Solovyev AG. Emergence of Intronless Evolutionary Forms of Stress Response Genes: Possible Relation to Terrestrial Adaptation of Green Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:83. [PMID: 30792726 PMCID: PMC6374339 DOI: 10.3389/fpls.2019.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 05/18/2023]
Affiliation(s)
- Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
- *Correspondence: Sergey Y. Morozov
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Abstract
The endoplasmic reticulum (ER) is critical in protein processing and particularly in ensuring that proteins undergo their correct folding to exert their functionality. What is becoming increasingly clear is that the ER may undergo increasing stress brought about by nutrient deprivation, hypoxia, oxidized lipids, point mutations in secreted proteins, cellular differentiation or significant deviation from metabolic set points, and loss of Ca2+ homeostasis, with detrimental effects on ER-resident calcium-dependent chaperones, alone or in combination. This results in the unfolded protein response (UPR) that is a repair mechanism to limit the formation of newly damaged proteins until ER homeostasis is restored, though may result in increased cell death. ER stress has been shown to be implicated in a variety of diseases. Statins are well-known cholesterol-lowering drugs and have been extensively reported to possess beneficial cholesterol-independent effects in a variety of human diseases. This review focuses on the concept of ER stress, the underlying molecular mechanisms and their relationship to the pathophysiology and, finally, the role of statins in moderating ER stress and UPR.
Collapse
|
8
|
Atabekova AK, Lazareva EA, Strelkova OS, Solovyev AG, Morozov SY. Mechanical stress-induced subcellular re-localization of N-terminally truncated tobacco Nt-4/1 protein. Biochimie 2018; 144:98-107. [PMID: 29097279 DOI: 10.1016/j.biochi.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
The Nicotiana tabacum 4/1 protein (Nt-4/1) of unknown function expressed in plant vasculature has been shown to localize to cytoplasmic bodies associated with endoplasmic reticulum. Here, we analyzed molecular interactions of an Nt-4/1 mutant with a deletion of 90 N-terminal amino acid residues (Nt-4/1d90) having a diffuse GFP-like localization. Upon transient co-expression with VAP27, a membrane protein known to localize to the ER, ER-plasma membrane contact sites and plasmodesmata, Nt-4/1d90 was concentrated around the cortical ER tubules, forming a network matching the shape of the cortical ER. Additionally, in response to mechanical stress, Nt-4/1d90 was re-localized to small spherical bodies, whereas the subcellular localization of VAP27 remained essentially unaffected. The Nt-4/1d90-containing bodies associated with microtubules, which underwent noticeable bundling under the conditions of mechanical stress. The Nt-4/1d90 re-localization to spherical bodies could also be induced by incubation at an elevated temperature, although under heat shock conditions the re-localization was less efficient and incomplete. An Nt-4/1d90 mutant, which had phosphorylation-mimicking mutations in a predicted cluster of four potentially phosphorylated residues, was found to both inefficiently re-localize to spherical bodies and tend to revert back to the initial diffuse localization. The presented data show that Nt-4/1 has a potential for response to stresses that is manifested by its deletion mutant Nt-4/1d90, and this response can be mediated by protein dephosphorylation.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Olga S Strelkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
9
|
Atabekova AK, Pankratenko AV, Makarova SS, Lazareva EA, Owens RA, Solovyev AG, Morozov SY. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins. Biochimie 2017; 132:28-37. [PMID: 27770627 DOI: 10.1016/j.biochi.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Anna V Pankratenko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Svetlana S Makarova
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|