1
|
Yan Y, Li L, Zheng M, Duan B, Zhang J, Li Y, Liu W, Liu X. Dynamic changes in proanthocyanidin composition, biosynthesis, and histochemistry in spine grape (Vitis davidii Foëx) tissues during berry development. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2697-2711. [PMID: 39564696 DOI: 10.1002/jsfa.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Spine grapes are widely cultivated in southern China because of their strong adaptability to hot and humid climates. As a wild species native to China, spine grape (Vitis davidii Foëx) was studied as a resource of proanthocyanidins (PAs). PA composition, biosynthesis, and histochemistry in different tissues (skins, seeds, and stems) during berry development were analyzed in this study. RESULTS The findings revealed that PA accumulation occurred in concurrence with flowering and was completed by veraison. High-performance liquid chromatographic results showed that the epicatechin type was the most dominant. The skins were more likely to accumulate PA polymers. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression levels of structural genes (flavonoid-3'-hydroxylase, flavonoid-3'5'-hydroxylase, dihydroflavonol 4-reductase, leucoanthocyanidin reductase, and leucoanthocyanidin dioxygenase) were positively associated with PA dynamic changes. Histochemical results revealed that PAs in skins were mainly found in the hypodermis of the exocarp, PAs in seeds were mainly found in the middle layer of the outer integument of the testa, and PAs in stems were mainly found in the phloem. CONCLUSION This study provides a clear understanding of the spatial and temporal accumulation of PAs in spine grape, and forms a basis for the analysis of structural profiles and synthesis of PAs and their biological effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinfang Yan
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Lin Li
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Mingyuan Zheng
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Bingbing Duan
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Jiajing Zhang
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
| | - Yashan Li
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
- School of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, People's Republic of China
| | - Wei Liu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, People's Republic of China
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, People's Republic of China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, People's Republic of China
| |
Collapse
|
2
|
Wu L, Xiong S, Shi X, Wang Y. AP3 promotes the synthesis of condensed tannin in fruit by positively regulating ANR expression. Int J Biol Macromol 2024; 261:129558. [PMID: 38242406 DOI: 10.1016/j.ijbiomac.2024.129558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Condensed tannins are often found in fruits and nuts and have an astringent flavor. The synthesis pathway of condensed tannins is already clear, but few related regulatory factors have been explored. Previous studies about MADS-box transcription factors have mainly focused on the regulation of floral organ development. Recent studies have shown that MADS-box are also involved in fruit development, maturation, and quality. The fruit of Quercus fabri is rich in starch and nutrients in its kernel but is difficult to eat directly because of its high condensed tannin content. This study identified and functionally characterized the MADS-box transcription factor QfAP3 in Q. fabri. Functional analysis based on overexpression in Micro-Tom showed that QfAP3 promoted condensed tannin synthesis. By analyzing the expression trend of key genes in the condensed tannin synthesis pathway in Micro-Tom plants, we found that the expression trend of ANR was consistent with that of QfAP3, and QfAP3 could bind to the promoter of ANR and positively regulate it. This study has discovered new functions of MADS-box transcription factors in fruit quality formation, developed new regulatory factors for the synthesis pathway of condensed tannin, and provided a biotechnological method that can effectively reduce astringency in fruit.
Collapse
Affiliation(s)
- Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xiang Shi
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
3
|
Escaray FJ, Valeri MC, Damiani F, Ruiz OA, Carrasco P, Paolocci F. Multiple bHLH/MYB-based protein complexes regulate proanthocyanidin biosynthesis in the herbage of Lotus spp. PLANTA 2023; 259:10. [PMID: 38041705 PMCID: PMC10693531 DOI: 10.1007/s00425-023-04281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
MAIN CONCLUSION The complexes involving MYBPA2, TT2b, and TT8 proteins are the critical regulators of ANR and LAR genes to promote the biosynthesis of proanthocyanidins in the leaves of Lotus spp. The environmental impact and health of ruminants fed with forage legumes depend on the herbage's concentration and structure of proanthocyanidins (PAs). Unfortunately, the primary forage legumes (alfalfa and clover) do not contain substantial levels of PAs. No significant progress has been made to induce PAs to agronomically valuable levels in their edible organs by biotechnological approaches thus far. Building this trait requires a profound knowledge of PA regulators and their interplay in species naturally committed to accumulating these metabolites in the target organs. Against this background, we compared the shoot transcriptomes of two inter-fertile Lotus species, namely Lotus tenuis and Lotus corniculatus, polymorphic for this trait, to search for differentially expressed MYB and bHLH genes. We then tested the expression of the above-reported regulators in L. tenuis x L. corniculatus interspecific hybrids, several Lotus spp., and different L. corniculatus organs with contrasting PA levels. We identified a novel MYB activator and MYB-bHLH-based complexes that, when expressed in Nicotiana benthamiana, trans-activated the promoters of L. corniculatus anthocyanidin reductase and leucoanthocyanidin reductase 1 genes. The last are the two critical structural genes for the biosynthesis of PAs in Lotus spp. Competition between MYB activators for the transactivation of these promoters also emerged. Overall, by employing Lotus as a model genus, we refined the transcriptional network underlying PA biosynthesis in the herbage of legumes. These findings are crucial to engineering this trait in pasture legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Instituto de Biología Molecular de Plantas (IBMCP) Universitat Politécnica de València - C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Maria Cristina Valeri
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy
| | - Francesco Damiani
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino KM 8.2, 7130, Chascomús, Buenos Aires, Argentina
| | - Pedro Carrasco
- Biotecmed, Department of Biochemistry and Molecular Biology, University of València, 46100, Burjassot, Valencia, Spain
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy.
| |
Collapse
|
4
|
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. PLANTA 2023; 257:108. [PMID: 37133783 DOI: 10.1007/s00425-023-04136-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chang Yu
- Kerchin District Branch Office, Tongliao City Ecological Environment Bureau, Tongliao, 028006, China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian, 116032, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
5
|
Liang J, Guo J, Liu Y, Zhang Z, Zhou R, Zhang P, Liang C, Wen P. UV-C Promotes the Accumulation of Flavane-3-ols in Juvenile Fruit of Grape through Positive Regulating VvMYBPA1. PLANTS (BASEL, SWITZERLAND) 2023; 12:1691. [PMID: 37111914 PMCID: PMC10144632 DOI: 10.3390/plants12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Flavane-3-ol monomers are the precursors of proanthocyanidins (PAs), which play a crucial role in grape resistance. Previous studies showed that UV-C positively regulated leucoanthocyanidin reductase (LAR) enzyme activity to promote the accumulation of total flavane-3-ols in juvenile grape fruit, but its molecular mechanism was still unclear. In this paper, we found that the contents of flavane-3-ol monomers increased dramatically at the early development stage grape fruit after UV-C treatment, and the expression of its related transcription factor VvMYBPA1 was also enhanced significantly. The contents of (-)-epicatechin and (+)-catechin, the expression level of VvLAR1 and VvANR, and the activities of LAR and anthocyanidin reductase (ANR) were improved significantly in the VvMYBPA1 overexpressed grape leaves compared to the empty vector. Both VvMYBPA1 and VvMYC2 could interact with VvWDR1 using bimolecular fluorescence complementation (BiFC) and yeast two hybrid (Y2H). Finally, VvMYBPA1 was proven to bind with the promoters of VvLAR1 and VvANR by yeast one hybrid (Y1H). To sum up, we found that the expression of VvMYBPA1 increased in the young stage of grape fruit after UV-C treatment. VvMYBPA1 formed a trimer complex with VvMYC2 and VvWDR1 to regulate the expression of VvLAR1 and VvANR, thus positively promoting the activities of LAR and ANR enzyme, and eventually improved the accumulation of flavane-3-ols in grape fruit.
Collapse
Affiliation(s)
- Jinjun Liang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| | - Jianyong Guo
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| | - Yafei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| | - Zening Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| | - Runtian Zhou
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| | - Pengfei Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| | - Changmei Liang
- College of Information Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Pengfei Wen
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; (J.L.)
| |
Collapse
|
6
|
Jia H, Tao J, Zhong W, Jiao X, Chen S, Wu M, Gao Z, Huang C. Nutritional Component Analyses in Different Varieties of Actinidia eriantha Kiwifruit by Transcriptomic and Metabolomic Approaches. Int J Mol Sci 2022; 23:ijms231810217. [PMID: 36142128 PMCID: PMC9499367 DOI: 10.3390/ijms231810217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.
Collapse
Affiliation(s)
- Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junjie Tao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqi Zhong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xudong Jiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuangshuang Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengting Wu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongshan Gao
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Huang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
7
|
Zhang B, Yang H, Qu D, Zhu Z, Yang Y, Zhao Z. The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1683-1700. [PMID: 35527510 PMCID: PMC9398380 DOI: 10.1111/pbi.13839] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Hui‐Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Dong Qu
- Shaanxi Key Laboratory Bio‐resourcesCollege of Bioscience and EngineeringShaanxi University of TechnologyHanzhongShaanxiChina
| | - Zhen‐Zhen Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Ya‐Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Zheng‐Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| |
Collapse
|
8
|
Peng LP, Hao Q, Men SQ, Wang XR, Huang WY, Tong NN, Chen M, Liu ZA, Ma XF, Shu QY. Ecotopic over-expression of PoCHS from Paeonia ostii altered the fatty acids composition and content in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 172:64-76. [PMID: 33247451 DOI: 10.1111/ppl.13293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.
Collapse
Affiliation(s)
- Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Si-Qi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Yuan Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Feng Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhao L, Song Z, Wang B, Gao Y, Shi J, Sui X, Chen X, Zhang Y, Li Y. R2R3-MYB Transcription Factor NtMYB330 Regulates Proanthocyanidin Biosynthesis and Seed Germination in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:819247. [PMID: 35111187 PMCID: PMC8801704 DOI: 10.3389/fpls.2021.819247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 05/14/2023]
Abstract
Proanthocyanidins (PAs) are important phenolic compounds and PA biosynthesis is regulated by a ternary MBW complex consisting of a R2R3-MYB regulator, a bHLH factor and a WDR protein. In this study, a tobacco R2R3-MYB factor NtMYB330 was characterized as the PA-specific regulator in which the PA biosynthesis was promoted in the flowers of NtMYB330-overexpressing lines while decreased in the flowers of ntmyb330 mutants. NtMYB330 can interact with flavonoid-related bHLH partner NtAn1b and WDR protein NtAn11-1, and the NtMYB330-NtAn1b complex is required to achieve strong transcriptional activation of the PA-related structural genes NtDFR1, NtANS1, NtLAR1 and NtANR1. Our data reveal that NtMYB330 regulates PA biosynthesis in seeds and affects seed germination, in which NtMYB330-overexpressing lines showed higher PA accumulations in seed coats and inhibited germination, while ntmyb330 mutants had reduced seed coat PAs and improved germination. NtMYB330 affects seed germination possibly through two mechanisms: modulating seed coat PAs to affect coat-imposed dormancy. In addition, NtMYB330 regulates the expressions of abscisic acid (ABA) and gibberellin acid (GA) signaling-related genes, affecting ABA-GA crosstalk and seed germination. This study reveals that NtMYB330 specifically regulates PA biosynthesis via formation of the MBW complex in tobacco flowers and affects germination through adjustment of PA concentrations and ABA/GA signaling in tobacco seeds.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- *Correspondence: Lu Zhao,
| | - Zhongbang Song
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bingwu Wang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yulong Gao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Junli Shi
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xueyi Sui
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yihan Zhang
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yongping Li
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- Yongping Li,
| |
Collapse
|
10
|
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020; 9:foods9121774. [PMID: 33265960 PMCID: PMC7759826 DOI: 10.3390/foods9121774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality.
Collapse
|
11
|
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:100-108. [PMID: 32422532 DOI: 10.1016/j.pbi.2020.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are by far the largest class of polyphenols with huge structural and functional diversity. However, the mystery regarding the exact evolutionary pressures which lead to the amazing diversity in plant flavonoids has yet to be completely uncovered. Here we review recent advances in understanding the conservation and diversification of flavonoid pathway from algae and early land plants to vascular plants including the model plant Arabidopsis and economically important species such as cereals, legumes, and medicinal plants. Studies on the origin and evolution of R2R3-MYB regulatory system demonstrated its highly conserved function of regulating flavonoid production in land plants and this innovation appears to have been crucial in boosting the overall levels of these compounds in land plants. Convergent evolution has occurred as different flavonoids independently which emerged in distant taxa resulting in similar defense and tolerance characteristics against environmental stresses. Future studies on an increasing number of plant species taking advantage of newly developed genomic and metabolite profiling technologies are envisaged to provide comprehensive insight into flavonoid biosynthesis as well as pathway diversification and the underlying evolutionary mechanisms.
Collapse
Affiliation(s)
- Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Bizzarri M, Delledonne M, Ferrarini A, Tononi P, Zago E, Vittori D, Damiani F, Paolocci F. Whole-Transcriptome Analysis Unveils the Synchronized Activities of Genes for Fructans in Developing Tubers of the Jerusalem Artichoke. FRONTIERS IN PLANT SCIENCE 2020; 11:101. [PMID: 32153609 PMCID: PMC7046554 DOI: 10.3389/fpls.2020.00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Helianthus tuberosus L., known as the Jerusalem artichoke, is a hexaploid plant species, adapted to low-nutrient soils, that accumulates high levels of inulin in its tubers. Inulin is a fructose-based polysaccharide used either as dietary fiber or for the production of bioethanol. Key enzymes involved in inulin biosynthesis are well known. However, the gene networks underpinning tuber development and inulin accumulation in H. tuberous remain elusive. To fill this gap, we selected 6,365 expressed sequence tags (ESTs) from an H. tuberosus library to set up a microarray platform and record their expression across three tuber developmental stages, when rhizomes start enlarging (T0), at maximum tuber elongation rate (T3), and at tuber physiological maturity (Tm), in "VR" and "K8-HS142"clones. The former was selected as an early tuberizing and the latter as a late-tuberizing clone. We quantified inulin and starch levels, and qRT-PCR confirmed the expression of critical genes accounting for inulin biosynthesis. The microarray analysis revealed that the differences in morphological and physiological traits between tubers of the two clones are genetically determined since T0 and that is relatively low the number of differentially expressed ESTs across the stages shared between the clones (93). The expression of ESTs for sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT), the two critical genes for fructans polymerization, resulted to be temporarily synchronized and mirror the progress of inulin accumulation and stretching. The expression of ESTs for starch biosynthesis was insignificant throughout the developmental stages of the clones in line with the negligible level of starch into their mature tubers, where inulin was the dominant polysaccharide. Overall, our study disclosed candidate genes underpinning the development and storage of carbohydrates in the tubers of two H. tuberosus clones. A model according to which the steady-state levels of 1-SST and 1-FFT transcripts are developmentally controlled and might represent a limiting factor for inulin accumulation has been provided. Our finding may have significant repercussions for breeding clones with improved levels of inulin for food and chemical industry.
Collapse
Affiliation(s)
- Marco Bizzarri
- Department of Science and Technology for Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | | | | | - Paola Tononi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Zago
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Doriano Vittori
- Department of Science and Technology for Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Damiani
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Perugia, Italy
| | - Francesco Paolocci
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Perugia, Italy
| |
Collapse
|
13
|
Shen Y, Sun T, Pan Q, Anupol N, Chen H, Shi J, Liu F, Deqiang D, Wang C, Zhao J, Yang S, Wang C, Liu J, Bao M, Ning G. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2078-2095. [PMID: 30951245 PMCID: PMC6790370 DOI: 10.1111/pbi.13123] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 05/15/2023]
Abstract
Flavonoids play critical roles in plant responses to various stresses. Few studies have been reported on what the mechanism of activating flavonoid biosynthesis in plant responses to wounding and oxidation is. In this study, flavonoid metabolites and many MYB transcript factors from Rosa rugosa were verified to be induced by wounding and oxidation. RrMYB5 and RrMYB10, which belong to PA1- and TT2-type MYB TFs, respectively, showed extremely high induction. Overexpression of RrMYB5 and RrMYB10 resulted in an increased accumulation of proanthocyanidins in R. rugosa and tobacco by promoting the expression of flavonoid structural genes. Transcriptomic analysis of the transgenic plants showed that most genes, involved in wounding and oxidation response and ABA signalling modulation, were up-regulated by the overexpression of RrMYB10, which was very much similar to that observed in RrANR and RrDFR overexpression transgenics. RrMYB5 and RrMYB10 physically interacted and mutually activated each other's expressions. They solely or synergistically activated the different sets of flavonoid pathway genes in a bHLH TF EGL3-independent manner. Eventually, the accumulation of proanthocyanidins enhanced plant tolerance to wounding and oxidative stresses. Therefore, RrMYB5 and RrMYB10 regulated flavonoid synthesis in feedback loop responding to wounding and oxidation in R. rugosa. Our study provides new insights into the regulatory mechanisms of flavonoid biosynthesis by MYB TFs and their essential physiological functions in plant responses to wounding and oxidative stresses.
Collapse
Affiliation(s)
- Yuxiao Shen
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Tingting Sun
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Qi Pan
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Nachaisin Anupol
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Hai Chen
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiewei Shi
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Fang Liu
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Duanmu Deqiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Changquan Wang
- College of HorticultureNanjing Agricultural UniversityNanjingJiangsuChina
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationCollege of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Shuhua Yang
- National Flowers Improvement Center of ChinaInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Caiyun Wang
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jihong Liu
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Manzhu Bao
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Guogui Ning
- Key laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
14
|
Ectopic expression of tea MYB genes alter spatial flavonoid accumulation in alfalfa (Medicago sativa). PLoS One 2019; 14:e0218336. [PMID: 31265465 PMCID: PMC6605665 DOI: 10.1371/journal.pone.0218336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 11/19/2022] Open
Abstract
Flavonoids are one of the largest secondary metabolite groups, which are widely present in plants. Flavonoids include anthocyanins, proanthocyanidins, flavonols and isoflavones. In particular, proanthocyanidins possess beneficial effects for ruminant animals in preventing lethal pasture bloat. As a major legume forage, alfalfa (Medicago sativa) contains little proanthocyanidins in foliage to combat bloat. In an attempt to improve proanthocyanidin content in alfalfa foliage, we over-expressed two MYB transcription factors (CsMYB5-1 and CsMYB5-2) from tea plant that is rich in proanthocyanidins. We showed that, via targeted metabolite and transcript analyses, the transgenic alfalfa plants accumulated higher levels of flavonoids in stems/leaves than the control, in particular anthocyanins and proanthocyanidins. Over-expression of CsMYB5-1 and CsMYB5-2 induced the expression levels of genes involved in flavonoid pathway, especially anthocyanin/proanthocyanidin-specific pathway genes DFR, ANS and ANR in stems/leaves. Both anthocyanin/proanthocyanidin content and the expression levels of several genes were conversely decreased in flowers of the transgenic lines than in control. Our results indicated that CsMYB5-1 and CsMYB5-2 differently regulate anthocyanins/proanthocyanidins in stems/leaves and flowers. Our study provides a guide for increasing anthocyanin/proanthocyanidin accumulation in foliage of legume forage corps by genetic engineering. These results also suggest that it is feasible to cultivate new varieties for forage production to potentially solve pasture bloat, by introducing transcription factors from typical plants with high proanthocyanidin level.
Collapse
|
15
|
Gu Z, Zhu J, Hao Q, Yuan YW, Duan YW, Men S, Wang Q, Hou Q, Liu ZA, Shu Q, Wang L. A Novel R2R3-MYB Transcription Factor Contributes to Petal Blotch Formation by Regulating Organ-Specific Expression of PsCHS in Tree Peony (Paeonia suffruticosa). PLANT & CELL PHYSIOLOGY 2019; 60:599-611. [PMID: 30496505 DOI: 10.1093/pcp/pcy232] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/24/2018] [Indexed: 05/20/2023]
Abstract
Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Jin Zhu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yao-Wu Yuan
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Yuan-Wen Duan
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Siqi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Li C, Qiu J, Huang S, Yin J, Yang G. AaMYB3 interacts with AabHLH1 to regulate proanthocyanidin accumulation in Anthurium andraeanum (Hort.)-another strategy to modulate pigmentation. HORTICULTURE RESEARCH 2019; 6:14. [PMID: 30603098 PMCID: PMC6312548 DOI: 10.1038/s41438-018-0102-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs), also known as "condensed tannins", are colorless metabolites produced through the flavonoid pathway that are involved in stress resistance in plants. Because PAs are involved in the anthocyanin biosynthetic pathway, they play a role in the modification of pigmentation conferred by anthocyanins in ornamental organs. In this study, we isolated the gene and functionally characterized an R2R3-MYB transcription factor (TF), AaMYB3, and a basic helix-loop-helix TF, AabHLH1, from Anthurium andraeanum (Hort.), a typical tropical flower. AaMYB3 is primarily expressed in the spathe and negatively correlates with anthocyanin accumulation. A complementation test in an Arabidopsis tt8 mutant showed that AabHLH1 successfully restores the PA-deficient seed coat phenotype. The ectopic overexpression of AaMYB3 alone or its coexpression with AabHLH1 in transgenic tobacco resulted in light pink or even pale-pink corolla limbs by reducing their anthocyanin levels and greatly enhancing their accumulation of PAs. This overexpression of the anthurium TF genes upregulated the late anthocyanin enzyme-encoding genes (NtDFR and NtANS) and the key PA genes (NtLAR and NtANR) in transgenic tobacco. The interaction between AaMYB3 and the AabHLH1 protein was confirmed using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. In the developing red spathes of the cultivars "Vitara" and "Tropical", the expression of AaMYB3 was closely linked to PA accumulation, and AaMYB3 was coexpressed with AaCHS, AaF3H, AaDFR, AaANS, AaLAR, and AaANR. The expression pattern of AabHLH1 was similar to that of AaF3'H. Our results suggest that AaMYB3 and AabHLH1 are involved in the regulation of PA biosynthesis in anthurium and could potentially be used to metabolically engineer PA biosynthesis in plants.
Collapse
Affiliation(s)
- Chonghui Li
- Tropical Crops Genetic Resources Institute, the Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737 China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Hainan Province, Danzhou, 571737 China
| | - Jian Qiu
- Rubber Research Institute, CATAS/ Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, 571737 China
| | - Surong Huang
- Tropical Crops Genetic Resources Institute, the Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737 China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Hainan Province, Danzhou, 571737 China
| | - Junmei Yin
- Tropical Crops Genetic Resources Institute, the Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737 China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Hainan Province, Danzhou, 571737 China
| | - Guangsui Yang
- Tropical Crops Genetic Resources Institute, the Chinese Academy of Tropical Agricultural Sciences (CATAS) / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737 China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Hainan Province, Danzhou, 571737 China
| |
Collapse
|
17
|
Wang WL, Wang YX, Li H, Liu ZW, Cui X, Zhuang J. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC PLANT BIOLOGY 2018; 18:288. [PMID: 30458720 DOI: 10.1186/s12870-018-1502-1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Flavonoids are secondary metabolites that play important roles in the entire tea plant life cycle and have potential health-promoting properties. MYB transcription factors (TFs) are considered potentially important regulators of flavonoid biosynthesis in plants. However, the molecular mechanisms by which MYB TFs regulate the flavonoid pathway in tea plant remain unknown. RESULTS In this study, two R2R3-MYB TFs (CsMYB2 and CsMYB26) involved in flavonoid biosynthesis in tea plant were investigated. The genes encoding CsMYB2 and CsMYB26 were cloned from the tea plant cultivar 'Longjing 43'. Phylogenetic analysis showed that CsMYB2 and CsMYB26 were grouped into the proanthocyanidin biosynthesis-related MYB clade. Multiple sequence alignment revealed that conserved motif 1 in the two MYB factors was related to the bHLH TF. Subcellular localization assays suggested that CsMYB2 localized in the nucleus. Promoter analysis indicated that CsMYB2, CsMYB26 and the related structural genes contain MYB recognition elements. The expression levels of the CsMYB2 and CsMYB26 genes and the structural genes in the flavonoid biosynthesis pathway were determined in leaves from various sites in the two tea plant cultivars 'Longjing 43' and 'Baiye 1 hao'. CONCLUSIONS The expression levels of these genes were correlated with the accumulated flavonoid content. The results demonstrated that the expression level of CsF3'H may be regulated by CsMYB2 and that CsMYB26 expression is positively correlated with CsLAR expression. The relative transcriptional level of CsMYB26 may be the main reason for the different epigallocatechin contents between the tea plant cultivars 'Longjing 43' and 'Baiye 1 hao'. Our results will serve as a reference for the potential regulatory roles of CsMYB2 and CsMYB26 in flavonoid biosynthesis in tea plant and may also assist biologists in improving tea quality.
Collapse
Affiliation(s)
- Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
18
|
Wang WL, Wang YX, Li H, Liu ZW, Cui X, Zhuang J. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC PLANT BIOLOGY 2018; 18:288. [PMID: 30458720 PMCID: PMC6247623 DOI: 10.1186/s12870-018-1502-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/26/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Flavonoids are secondary metabolites that play important roles in the entire tea plant life cycle and have potential health-promoting properties. MYB transcription factors (TFs) are considered potentially important regulators of flavonoid biosynthesis in plants. However, the molecular mechanisms by which MYB TFs regulate the flavonoid pathway in tea plant remain unknown. RESULTS In this study, two R2R3-MYB TFs (CsMYB2 and CsMYB26) involved in flavonoid biosynthesis in tea plant were investigated. The genes encoding CsMYB2 and CsMYB26 were cloned from the tea plant cultivar 'Longjing 43'. Phylogenetic analysis showed that CsMYB2 and CsMYB26 were grouped into the proanthocyanidin biosynthesis-related MYB clade. Multiple sequence alignment revealed that conserved motif 1 in the two MYB factors was related to the bHLH TF. Subcellular localization assays suggested that CsMYB2 localized in the nucleus. Promoter analysis indicated that CsMYB2, CsMYB26 and the related structural genes contain MYB recognition elements. The expression levels of the CsMYB2 and CsMYB26 genes and the structural genes in the flavonoid biosynthesis pathway were determined in leaves from various sites in the two tea plant cultivars 'Longjing 43' and 'Baiye 1 hao'. CONCLUSIONS The expression levels of these genes were correlated with the accumulated flavonoid content. The results demonstrated that the expression level of CsF3'H may be regulated by CsMYB2 and that CsMYB26 expression is positively correlated with CsLAR expression. The relative transcriptional level of CsMYB26 may be the main reason for the different epigallocatechin contents between the tea plant cultivars 'Longjing 43' and 'Baiye 1 hao'. Our results will serve as a reference for the potential regulatory roles of CsMYB2 and CsMYB26 in flavonoid biosynthesis in tea plant and may also assist biologists in improving tea quality.
Collapse
Affiliation(s)
- Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu China
| |
Collapse
|
19
|
Anwar M, Wang G, Wu J, Waheed S, Allan AC, Zeng L. Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco. Molecules 2018; 23:E781. [PMID: 29597321 PMCID: PMC6017421 DOI: 10.3390/molecules23040781] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022] Open
Abstract
R2R3 MYB transcription factors play key functions in the regulation of secondary metabolites. In the present study, a R2R3 MYB transcriptional factor NtMYB2 was identified from Chinese narcissus (Narcissus tazetta L. var. Chinensis Roem) and functionally characterized. NtMYB2 belongs to subgroup 4 of the R2R3 MYB transcription factor family that are related to repressor MYBs involved in the regulation of anthocyanin and flavonoids. Transient expression confirmed that NtMYB2 strongly reduced the red pigmentation induced by MYB- anthocyanin activators in agro-infiltrated tobacco leaves. Ectopic expression of NtMYB2 in tobacco significantly reduced the pigmentation and altered the floral phenotypes in transgenic tobacco flowers. Gene expression analysis suggested that NtMYB2 repressed the transcript levels of structural genes involved in anthocyanin biosynthesis pathway, especially the UFGT gene. NtMYB2 gene is expressed in all examined narcissus tissues; the levels of transcription in petals and corona is higher than other tissues and the transcription level at the bud stage was highest. These results show that NtMYB2 is involved in the regulation of anthocyanin biosynthesis pathway and may act as a repressor by down regulating the transcripts of key enzyme genes in Chinese narcissus.
Collapse
Affiliation(s)
- Muhammad Anwar
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Guiqing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Jiacheng Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research, Mt Albert Research Centre, Private Bag 92169, 1142 Auckland, New Zealand.
- School of Biological Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand.
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| |
Collapse
|
20
|
Blanco E, Sabetta W, Danzi D, Negro D, Passeri V, Lisi AD, Paolocci F, Sonnante G. Isolation and Characterization of the Flavonol Regulator CcMYB12 From the Globe Artichoke [ Cynara cardunculus var. scolymus (L.) Fiori]. FRONTIERS IN PLANT SCIENCE 2018; 9:941. [PMID: 30026747 PMCID: PMC6042477 DOI: 10.3389/fpls.2018.00941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/12/2018] [Indexed: 05/07/2023]
Abstract
Flavonoids are a well-studied group of secondary metabolites, belonging to the phenylpropanoid pathway. Flavonoids are known to exhibit health promoting effects such as antioxidant capacities, anti-cancer and anti-inflammatory activity. Globe artichoke is an important source of bioactive phenolic compounds, including flavonoids. To study the regulation of their biosynthesis, a R2R3-MYB transcription factor, CcMYB12, was isolated from artichoke leaves. Phylogenetic analysis showed that this protein belongs to the MYB subgroup 7 (flavonol-specific MYB), which includes Arabidopsis AtMYB12, grapevine VvMYBF1, and tomato SlMYB12. CcMYB12 transcripts were detected specifically in artichoke immature inflorescence and young leaves and overlapped with the profiles of flavonol biosynthetic genes. Electrophoretic mobility shift assays (EMSAs) revealed that recombinant CcMYB12 protein is able to bind to ACII element, a DNA binding site ubiquitously present in the promoters of genes encoding flavonol biosynthetic enzymes. In transgenic Arabidopsis plants, the overexpression of CcMYB12 activated the expression of endogenous flavonol biosynthesis genes, leading to an increase of flavonol accumulation and a decrease of anthocyanins in leaves. Likewise, in transgenic tobacco petals and leaves, the overexpression of CcMYB12 decreased anthocyanin levels and increased flavonols.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
- *Correspondence: Emanuela Blanco,
| | - Wilma Sabetta
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Donatella Danzi
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Donatella Negro
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Valentina Passeri
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Antonino De Lisi
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Francesco Paolocci
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| |
Collapse
|