1
|
Xu X, Mo Q, Cai Z, Jiang Q, Zhou D, Yi J. Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice. Int J Mol Sci 2024; 25:13237. [PMID: 39769000 PMCID: PMC11675829 DOI: 10.3390/ijms252413237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Rice (Oryza sativa), a globally significant staple crop, is crucial for ensuring human food security due to its high yield and quality. However, the intensification of industrial activities has resulted in escalating cadmium (Cd) pollution in agricultural soils, posing a substantial threat to rice production. To address this challenge, this review comprehensively analyzes rice promoters, with a particular focus on identifying and characterizing key cis-regulatory elements (CREs) within them. By elucidating the roles of these CREs in regulating Cd stress response and accumulation in rice, we aim to establish a scientific foundation for developing rice varieties with reduced Cd accumulation and enhanced tolerance. Furthermore, based on the current understanding of plant promoters and their associated CREs, our study identifies several critical research directions. These include the exploration of tissue-specific and inducible promoters, as well as the discovery of novel CREs specifically involved in the mechanisms of Cd uptake, transport, and detoxification in rice. Our findings not only contribute to the existing knowledge base on genetic engineering strategies for mitigating Cd contamination in rice but pave the way for future research aimed at enhancing rice's resilience to Cd pollution, ultimately contributing to the safeguarding of global food security.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.M.); (Z.C.); (Q.J.); (D.Z.)
| |
Collapse
|
2
|
Dharni JS, Shi Y, Zhang C, Petersen C, Walia H, Staswick P. Growth and transcriptional response of wheat and rice to the tertiary amine BMVE. FRONTIERS IN PLANT SCIENCE 2024; 14:1273620. [PMID: 38269141 PMCID: PMC10806070 DOI: 10.3389/fpls.2023.1273620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Introduction Seed vigor is largely a product of sound seed development, maturation processes, genetics, and storage conditions. It is a crucial factor impacting plant growth and crop yield and is negatively affected by unfavorable environmental conditions, which can include drought and heat as well as cold wet conditions. The latter leads to slow germination and increased seedling susceptibility to pathogens. Prior research has shown that a class of plant growth regulators called substituted tertiary amines (STAs) can enhance seed germination, seedling growth, and crop productivity. However, inconsistent benefits have limited STA adoption on a commercial scale. Methods We developed a novel seed treatment protocol to evaluate the efficacy of 2-(N-methyl benzyl aminoethyl)-3-methyl butanoate (BMVE), which has shown promise as a crop seed treatment in field trials. Transcriptomic analysis of rice seedlings 24 h after BMVE treatment was done to identify the molecular basis for the improved seedling growth. The impact of BMVE on seed development was also evaluated by spraying rice panicles shortly after flower fertilization and subsequently monitoring the impact on seed traits. Results BMVE treatment of seeds 24 h after imbibition consistently improved wheat and rice seedling shoot and root growth in lab conditions. Treated wheat seedlings grown to maturity in a greenhouse also resulted in higher biomass than controls, though only under drought conditions. Treated seedlings had increased levels of transcripts involved in reactive oxygen species scavenging and auxin and gibberellic acid signaling. Conversely, several genes associated with increased reactive oxygen species/ROS load, abiotic stress responses, and germination hindering processes were reduced. BMVE spray increased both fresh and mature seed weights relative to the control for plants exposed to 96 h of heat stress. BMVE treatment during seed development also benefited germination and seedling growth in the next generation, under both ambient and heat stress conditions. Discussion The optimized experimental conditions we developed provide convincing evidence that BMVE does indeed have efficacy in plant growth enhancement. The results advance our understanding of how STAs work at the molecular level and provide insights for their practical application to improve crop growth.
Collapse
Affiliation(s)
- Jaspinder Singh Dharni
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Yu Shi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | | | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
3
|
Juurakko CL, Bredow M, diCenzo GC, Walker VK. Cold-inducible promoter-driven knockdown of Brachypodium antifreeze proteins confers freezing and phytopathogen susceptibility. PLANT DIRECT 2022; 6:e449. [PMID: 36172079 PMCID: PMC9467863 DOI: 10.1002/pld3.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The model forage crop, Brachypodium distachyon, has a cluster of ice recrystallization inhibition (BdIRI) genes, which encode antifreeze proteins that function by adsorbing to ice crystals and inhibiting their growth. The genes were targeted for knockdown using a cold-induced promoter from rice (prOsMYB1R35) to drive miRNA. The transgenic lines showed no apparent pleiotropic developmental defects but had reduced antifreeze activity as assessed by assays for ice-recrystallization inhibition, thermal hysteresis, electrolyte leakage, and leaf infrared thermography. Strikingly, the number of cold-acclimated transgenic plants that survived freezing at -8°C was reduced by half or killed entirely, depending on the line, compared with cold-acclimated wild type plants. In addition, more leaf damage was apparent at subzero temperatures in knockdowns after infection with an ice nucleating pathogen, Pseudomonas syringae. Although antifreeze proteins have been studied for almost 60 years, this is the first unequivocal demonstration of their function by knockdown in any organism, and their dual contribution to freeze protection as well as pathogen susceptibility, independent of obvious developmental defects. These proteins are thus of potential interest in a wide range of biotechnological applications from cryopreservation, to frozen product additives, to the engineering of transgenic crops with enhanced pathogen and freezing tolerance.
Collapse
Affiliation(s)
| | - Melissa Bredow
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- Present address:
Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | | | - Virginia K. Walker
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- School of Environmental StudiesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
4
|
Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana. Biotechnol Lett 2020; 42:2035-2047. [PMID: 32681381 DOI: 10.1007/s10529-020-02967-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/12/2020] [Indexed: 01/08/2023]
Abstract
The production of wheat is severely affected by abiotic stresses such as cold, drought, salinity, and high temperature. Although constitutive promoters are frequently used to regulate the expression of alien genes, these may lead to undesirable side-effects in transgenic plants. Therefore, identification and characterization of an inducible promoter that can express transgene only when exposed to stresses are of great importance in the genetic engineering of crop plants. Previous studies have indicated the abiotic stress-responsive behavior of myo-inositol oxygenase (MIOX) gene in different plants. Here, we isolated the MIOX gene promoter from wheat (TaMIOX). The in-silico analysis revealed the presence of various abiotic stress-responsive cis-elements in the promoter region. The TaMIOX promoter was fused with the UidA reporter gene and transformed into Arabidopsis thaliana. The T3 single-copy homozygous lines were analyzed for GUS activity using histochemical and fluorometric assays. Transcript expression of TaMIOX::UidA was significantly up-regulated by heat (five fold), cold (seven fold), and drought (five fold) stresses as compared to transgenic plants grown without stress-induced conditions. The CaMV35S::UidA plants showed very high GUS activity even in normal conditions. In contrast, the TaMIOX::UidA plants showed prominent GUS activity only in stress treatments (cold, heat, and drought), which suggests the inducible behavior of the TaMIOX promoter. The substrate myo-inositol feeding assay of TaMIOX::UidA plants showed lesser GUS activity as compared to plants treated in abiotic stress conditions. Results support that the TaMIOX promoter could be used as a potential candidate for conditional expression of the transgene in abiotic stress conditions.
Collapse
|
5
|
Nguyen LN, Novak N, Baumann M, Koehn J, Borth N. Bioinformatic Identification of Chinese Hamster Ovary (CHO) Cold‐Shock Genes and Biological Evidence of their Cold‐Inducible Promoters. Biotechnol J 2019; 15:e1900359. [DOI: 10.1002/biot.201900359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/02/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Ly Ngoc Nguyen
- Austrian Centre of Industrial Biotechnology Muthgasse 11 1190 Vienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria
| | - Neža Novak
- Austrian Centre of Industrial Biotechnology Muthgasse 11 1190 Vienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology Muthgasse 11 1190 Vienna Austria
| | - Jadranka Koehn
- Rentschler Biopharma Erwin‐Rentschler‐Strasse 21 88471 Laupheim Germany
| | - Nicole Borth
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
6
|
Huang R, Liu D, Huang M, Ma J, Li Z, Li M, Sui S. CpWRKY71, a WRKY Transcription Factor Gene of Wintersweet ( Chimonanthus praecox), Promotes Flowering and Leaf Senescence in Arabidopsis. Int J Mol Sci 2019; 20:ijms20215325. [PMID: 31731556 PMCID: PMC6862124 DOI: 10.3390/ijms20215325] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
The WRKY transcription factors are one of the most important plant-specific transcription factors and play vital roles in various biological processes. However, the functions of WRKY genes in wintersweet (Chimonanthus praecox) are still unknown. In this report, a group IIc WRKY gene, CpWRKY71, was isolated from wintersweet. CpWRKY71 was localized to the nucleus and possessed transcriptional activation activity. qRT-PCR (quantitative real-time PCR) analysis showed that CpWRKY71 was expressed in all tissues tested, with higher expression in flowers and senescing leaves. During the flower development, the highest expression was detected in the early-withering stage, an obvious expression of CpWRKY71 was also observed in the flower primordia differentiation and the bloom stage. Meanwhile, the expression of CpWRKY71 was influenced by various abiotic stress and hormone treatments. The expression patterns of the CpWRKY71 gene were further confirmed in CpWRKY71pro:GUS (β-glucuronidase) plants. Heterologous overexpression of CpWRKY71 in Arabidopsis caused early flowering. Consistent with the early flowering phenotype, the expression of floral pathway integrators and floral meristem identity (FMI) genes were significantly up-regulated in transgenic plants. In addition, we also observed that the transgenic plants of CpWRKY71 exhibited precocious leaf senescence. In conclusion, our results suggested that CpWRKY71 may be involved in the regulation of flowering and leaf senescence in Arabidopsis. Our study provides a foundation for further characterization of CpWRKY genes function in wintersweet, and also enrich our knowledge of molecular mechanism about flowering and senescence in wintersweet.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyang Li
- Correspondence: (M.L.); (S.S.); Tel.: +86-23-6825-0086 (M.L.); +86-23-6825-0086 (S.S.)
| | - Shunzhao Sui
- Correspondence: (M.L.); (S.S.); Tel.: +86-23-6825-0086 (M.L.); +86-23-6825-0086 (S.S.)
| |
Collapse
|
7
|
Xue M, Long Y, Zhao Z, Huang G, Huang K, Zhang T, Jiang Y, Yuan Q, Pei X. Isolation and Characterization of a Green-Tissue Promoter from Common Wild Rice ( Oryza rufipogon Griff.). Int J Mol Sci 2018; 19:ijms19072009. [PMID: 29996483 PMCID: PMC6073244 DOI: 10.3390/ijms19072009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
Promoters play a very important role in the initiation and regulation of gene transcription. Green-tissue promoter is of great significance to the development of genetically modified crops. Based on RNA-seq data and RT-PCR expression analysis, this study screened a gene, OrGSE (GREEN SPECIAL EXPRESS), which is expressed specifically in green tissues. The study also isolated the promoter of the OrGSE gene (OrGSEp), and predicted many cis-acting elements, such as the CAAT-Box and TATA-Box, and light-responding elements, including circadian, G-BOX and GT1 CONSENSUS. Histochemical analysis and quantification of GUS activity in transgenic Arabidopsis thaliana plants expressing GUS under the control of OrGSEp revealed that this promoter is not only green tissue-specific, but also light-inducible. The ability of a series of 5’-deletion fragments of OrGSEp to drive GUS expression in Arabidopsis was also evaluated. We found that the promoter region from −54 to −114 is critical for the promoter function, and the region from −374 to −114 may contain core cis-elements involved in light response. In transgenic rice expressing GUS under the control of OrGSEp, visualization and quantification of GUS activity showed that GUS was preferentially expressed in green tissues and not in endosperm. OrGSEp is a useful regulatory element for breeding pest-resistant crops.
Collapse
Affiliation(s)
- Mande Xue
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yan Long
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiqiang Zhao
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Gege Huang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Ke Huang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Tianbao Zhang
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ying Jiang
- Experimental Center Basic Medical Teaching, Capital Medical University, Beijing 100069, China.
| | - Qianhua Yuan
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xinwu Pei
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Li H, Li J, Xu R, Qin R, Song F, Li L, Wei P, Yang J. Isolation of five rice nonendosperm tissue-expressed promoters and evaluation of their activities in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1138-1147. [PMID: 29105251 PMCID: PMC5978396 DOI: 10.1111/pbi.12858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/17/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Using promoters expressed in nonendosperm tissues to activate target genes in specific plant tissues or organs with very limited expression in the endosperm is an attractive approach in crop transgenic engineering. In this article, five putative nonendosperm tissue-expressed promoters were cloned from the rice genome and designated POsNETE1 , POsNETE2 , POsNETE3 , POsNETE4 and POsNETE5 . By qualitatively and quantitatively examining GUSplus reporter gene expression in transgenic rice plants, POsNETE1 -POsNETE5 were all found to be active in the roots, leaves, stems, sheaths and panicles but not in the endosperm of plants at different developmental stages. In addition, POsNETE2 , POsNETE4 and POsNETE5 were also inactive in rice embryos. Among these promoters, POsNETE4 and POsNETE5 exhibited higher activities in all of the tested tissues, and their activities in stems, leaves, roots and sheaths were higher than or comparable to those of the rice Actin1 promoter. We also progressively monitored the activities of POsNETE1 -POsNETE5 in two generations of single-copy lines and found that these promoters were stably expressed between generations. Transgenic rice was produced using POsNETE4 and POsNETE5 to drive a modified Bt gene, mCry1Ab. Bt protein expressed in the tested plants ranged from 1769.4 to 4428.8 ng/g fresh leaves, whereas Bt protein was barely detected in the endosperm. Overall, our study identified five novel nonendosperm tissue-expressed promoters that might be suitable for rice genetic engineering and might reduce potential social concern regarding the safety of GMO crops.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Rongfang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Ruiying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Fengshun Song
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Pengcheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Jianbo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| |
Collapse
|