1
|
Grierson ERP, Thrimawithana AH, van Klink JW, Lewis DH, Carvajal I, Shiller J, Miller P, Deroles SC, Clearwater MJ, Davies KM, Chagné D, Schwinn KE. A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium). THE NEW PHYTOLOGIST 2024. [PMID: 38532557 DOI: 10.1111/nph.19714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Mānuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a mānuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.
Collapse
Affiliation(s)
- Ella R P Grierson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | | | - John W van Klink
- PFR, Chemistry Department, University of Otago, Dunedin, 9016, New Zealand
| | - David H Lewis
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | | | - Jason Shiller
- PFR, Te Puke Research Centre, Te Puke, 3182, New Zealand
| | - Poppy Miller
- PFR, Te Puke Research Centre, Te Puke, 3182, New Zealand
| | | | - Michael J Clearwater
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| |
Collapse
|
2
|
He JZ, Dorion S, Carmona-Rojas LM, Rivoal J. Carbon Fluxes in Potato ( Solanum tuberosum) Remain Stable in Cell Cultures Exposed to Nutritional Phosphate Deficiency. BIOLOGY 2023; 12:1190. [PMID: 37759596 PMCID: PMC10525292 DOI: 10.3390/biology12091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Nutritional phosphate deficiency is a major limitation to plant growth. Here, we monitored fluxes in pathways supporting respiratory metabolism in potato (Solanum tuberosum) cell cultures growing in control or limiting phosphate conditions. Sugar uptake was quantified using [U-14C]sucrose as precursor. Carbohydrate degradation through glycolysis and respiratory pathways was estimated using the catabolism of [U-14C]sucrose to 14CO2. Anaplerotic carbon flux was assessed by labeling with NaH14CO3. The data showed that these metabolic fluxes displayed distinct patterns over culture time. However, phosphate depletion had relatively little impact on the various fluxes. Sucrose uptake was higher during the first six days of culture, followed by a decline, which was steeper in Pi-sufficient cells. Anaplerotic pathway flux was more important at day three and decreased thereafter. In contrast, the flux between sucrose and CO2 was at a maximum in the mid-log phase of the culture, with a peak at Day 6. Metabolization of [U-14C]sucrose into neutral, basic and acidic fractions was also unaffected by phosphate nutrition. Hence, the well-documented changes in central metabolism enzymes activities in response to Pi deficiency do not drastically modify metabolic fluxes, but rather result in the maintenance of the carbon fluxes that support respiration.
Collapse
Affiliation(s)
- Jiang Zhou He
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Laura Michell Carmona-Rojas
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
- Grupo de Biotecnologiía, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medelliín 050010, Colombia
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| |
Collapse
|
3
|
Allen DK, Young JD. Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol 2019; 64:92-100. [PMID: 31864070 PMCID: PMC7302994 DOI: 10.1016/j.copbio.2019.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Metabolism is dynamic and must function in context-specific ways to adjust to changes in the surrounding cellular and ecological environment. When isotopic tracers are used, metabolite flow (i.e. metabolic flux) can be quantified through biochemical networks to assess metabolic pathway operation. The cellular activities considered across multiple tissues and organs result in the observed phenotype and can be analyzed to discover emergent, whole-system properties of biology and elucidate misconceptions about network operation. However, temporal and spatial challenges remain significant hurdles and require novel approaches and creative solutions. We survey current investigations in higher plant and animal systems focused on dynamic isotope labeling experiments, spatially resolved measurement strategies, and observations from re-analysis of our own studies that suggest prospects for future work. Related discoveries will be necessary to push the frontier of our understanding of metabolism to suggest novel solutions to cure disease and feed a growing future world population.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Jamey D Young
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States.
| |
Collapse
|