1
|
Wang C, Zhang Y, Wang S, Lv X, Xu J, Zhang X, Yang Q, Meng F, Xu B. Differential effects of domesticated and wild Capsicum frutescens L. on microbial community assembly and metabolic functions in rhizosphere soil. Front Microbiol 2024; 15:1383526. [PMID: 39040904 PMCID: PMC11261347 DOI: 10.3389/fmicb.2024.1383526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Objective Rhizosphere microorganisms play crucial roles in the growth and development of plants, disease resistance, and environmental adaptability. As the only wild pepper variety resource in China, domesticated Capsicum frutescens Linn. (Xiaomila) exhibits varying beneficial traits and affects rhizosphere microbial composition compared with its wild counterparts. In this study, we aimed to identify specific rhizosphere microbiome and metabolism patterns established during the domestication process. Methods The rhizosphere microbial diversity and composition of domesticated and wild C. frutescens were detected and analyzed by metagenomics. Non-targeted metabolomics were used to explore the differences of metabolites in rhizosphere soil between wild and domesticated C. frutescens. Results We found that the rhizosphere microbial diversity of domesticated variety was significantly different from that of the wild variety, with Massilia being its dominant bacteria. However, the abundance of certain beneficial microbes such as Gemmatimonas, Streptomyces, Rambibacter, and Lysobacter decreased significantly. The main metabolites identified in the wild variety included serylthreonine, deoxyloganic acid, vitamin C, among others. In contrast, those identified in the domesticated group were 4-hydroxy-l-glutamic acid and benzoic acid. Furthermore, the differentially enriched pathways were concentrated in tyrosine and tryptophan biosynthesis, histidine and purine-derived alkaloids biosynthesis, benzoic acid family, two-component system, etc. Conclusion This study revealed that C. frutescens established specific rhizosphere microbiota and metabolites during domestication, which has important significance for the efficient utilization of beneficial microorganisms in breeding and cultivation practices.
Collapse
Affiliation(s)
- Can Wang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
- Institute of Medicinal Biological Technique, Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, China
| | - Yinghua Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiang Wang
- Institute of Medicinal Biological Technique, Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, China
| | - Xia Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junqiang Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xueting Zhang
- Institute of Medicinal Biological Technique, Wenshan Academy of Agricultural Sciences, Wenshan, Yunnan, China
| | - Qing Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fanlai Meng
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, China
| | - Bin Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Albert B, Dellero Y, Leport L, Aubert M, Bouchereau A, Le Cahérec F. Low Nitrogen Input Mitigates Quantitative but Not Qualitative Reconfiguration of Leaf Primary Metabolism in Brassica napus L. Subjected to Drought and Rehydration. PLANTS (BASEL, SWITZERLAND) 2024; 13:969. [PMID: 38611498 PMCID: PMC11013775 DOI: 10.3390/plants13070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
In the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in Brassica species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients. Thus, N deficiency could have detrimental effects on the acclimation of WOSR to drought. Here, we took advantage of a previously established experiment to evaluate the metabolic acclimation of WOSR during 14 days of drought, followed by 8 days of rehydration under high- or low-N fertilization regimes. For this purpose, we selected three leaf ranks exhibiting contrasted sink/source status to perform absolute quantification of plant central metabolites. Besides the well-described accumulation of proline, we observed contrasted accumulations of some "respiratory" amino acids (branched-chain amino acids, lysineand tyrosine) in response to drought under high- and low-N conditions. Drought also induced an increase in sucrose content in sink leaves combined with a decrease in source leaves. N deficiency strongly decreased the levels of major amino acids and subsequently the metabolic response to drought. The drought-rehydration sequence identified proline, phenylalanine, and tryptophan as valuable metabolic indicators of WOSR water status for sink leaves. The results were discussed with respect to the metabolic origin of sucrose and some amino acids in sink leaves and the impact of drought on source-to-sink remobilization processes depending on N nutrition status. Overall, this study identified major metabolic signatures reflecting a similar response of oilseed rape to drought under low- and high-N conditions.
Collapse
Affiliation(s)
- Benjamin Albert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Laurent Leport
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Mathieu Aubert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Françoise Le Cahérec
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| |
Collapse
|
3
|
A comparative genomics examination of desiccation tolerance and sensitivity in two sister grass species. Proc Natl Acad Sci U S A 2022; 119:2118886119. [PMID: 35082155 PMCID: PMC8812550 DOI: 10.1073/pnas.2118886119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
This is a significant sister group contrast comparative study of the underpinning genomics and evolution of desiccation tolerance (DT), a critical trait in the evolution of land plants. Our results revealed that the DT grass Sporobolus stapfianus is transcriptionally primed to tolerate a dehydration/desiccation event and that the desiccation response in the DT S. stapfianus is distinct from the water stress response of the desiccation-sensitive Sporobolus pyramidalis. Our results also show that the desiccation response is largely unique, indicating a recent evolution of this trait within the angiosperms, and that inhibition of senescence during dehydration is likely critical in rendering a plant desiccation tolerant. Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis. Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g−1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis. A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.
Collapse
|
4
|
Yobi A, Bagaza C, Batushansky A, Shrestha V, Emery ML, Holden S, Turner-Hissong S, Miller ND, Mawhinney TP, Angelovici R. The complex response of free and bound amino acids to water stress during the seed setting stage in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:838-855. [PMID: 31901179 DOI: 10.1111/tpj.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Free amino acids (FAAs) and protein-bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation-tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marianne L Emery
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah Turner-Hissong
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|