1
|
Wetters S, Nick P. B-class gene GLOBOSA - a facilitator for enriched species diversity of Salvia in the New World? PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:333-346. [PMID: 39964076 PMCID: PMC11950904 DOI: 10.1111/plb.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/23/2025] [Indexed: 03/29/2025]
Abstract
The genus Salvia, comprising around 1000 species, half of which are found in the New World, belongs to the taxonomically most challenging genera within the Lamiaceae. A part of this diversity can be ascribed to the shape and expansion of the corolla and stamen structures, because changes in geometry of the sexual organs and attractance of pollinators might establish propagation barriers. However, the structural, functional, and evolutionary context of the underlying genes has not yet been elaborated. In this study, we analyse a large set of flowers from Salvia species of different geographic origin and use this morphometric framework to address gene expression and phylogenetic analysis of the MADS-box B-class gene, GLOBOSA. We examined expression of GLOBOSA in petals and anthers throughout anthesis for both Salvia pratensis L., as species from Europe, and the American Salvia elegans Vahl. Structural analysis of the B-class genes reveals typical MADS-MIKC-type composition. When we infer phylogenies for GLOBOSA and its binding partner DEFICIENS, we see a genus-wide duplication of DEFICIENS in Salvia and a specific duplication of GLOBOSA in Salvia species from the New World. Based on the first description of flowering genes in the genus Salvia, we arrive at a working model, where a duplication of GLOBOSA enabled the intense radiation of New World Salvia by neo-functionalization of a flower identity gene for morphogenetic control of corolla and anther geometry. We propose that the genus Salvia can be used as paradigm to address the role of EvoDevo for plant speciation.
Collapse
Affiliation(s)
- S. Wetters
- Department of Molecular Cell BiologyJoseph Gottlieb Kölreuter Institute of Plant Science (JKIP), Karlsruhe Institute of TechnologyKarlsruheGermany
| | - P. Nick
- Department of Molecular Cell BiologyJoseph Gottlieb Kölreuter Institute of Plant Science (JKIP), Karlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
2
|
Oseni OM, Sajaditabar R, Mahmoud SS. Metabolic engineering of terpene metabolism in lavender. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:67. [PMID: 38988370 PMCID: PMC11230991 DOI: 10.1186/s43088-024-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background Several members of the Lamiaceae family of plants produce large amounts of essential oil [EO] that find extensive applications in the food, cosmetics, personal hygiene, and alternative medicine industries. There is interest in enhancing EO metabolism in these plants. Main body Lavender produces a valuable EO that is highly enriched in monoterpenes, the C10 class of the isoprenoids or terpenoids. In recent years, substantial effort has been made by researchers to study terpene metabolism and enhance lavender EO through plant biotechnology. This paper reviews recent advances related to the cloning of lavender monoterpene biosynthetic genes and metabolic engineering attempts aimed at improving the production of lavender monoterpenes in plants and microbes. Conclusion Metabolic engineering has led to the improvement of EO quality and yield in several plants, including lavender. Furthermore, several biologically active EO constituents have been produced in microorganisms.
Collapse
Affiliation(s)
- Ojo Michael Oseni
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Reza Sajaditabar
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 Canada
| |
Collapse
|
3
|
Ali M, Nishawy E, Ramadan WA, Ewas M, Rizk MS, Sief-Eldein AGM, El-Zayat MAS, Hassan AHM, Guo M, Hu GW, Wang S, Ahmed FA, Amar MH, Wang QF. Molecular characterization of a Novel NAD+-dependent farnesol dehydrogenase SoFLDH gene involved in sesquiterpenoid synthases from Salvia officinalis. PLoS One 2022; 17:e0269045. [PMID: 35657794 PMCID: PMC9165828 DOI: 10.1371/journal.pone.0269045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Salvia officinalis is one of the most important medicinal and aromatic plants in terms of nutritional and medicinal value because it contains a variety of vital active ingredients. Terpenoid compounds, particularly monoterpenes (C10) and sesquiterpenes, are the most important and abundant among these active substances (C15). Terpenes play a variety of roles and have beneficial biological properties in plants. With these considerations, the current study sought to clone theNAD+-dependent farnesol dehydrogenase (SoFLDH, EC: 1.1.1.354) gene from S. officinalis. Functional analysis revealed that, SoFLDH has an open reading frame of 2,580 base pairs that encodes 860 amino acids.SoFLDH has two conserved domains and four types of highly conserved motifs: YxxxK, RXR, RR (X8) W, TGxxGhaG. However, SoFLDH was cloned from Salvia officinalis leaves and functionally overexpressed in Arabidopsis thaliana to investigate its role in sesquiterpenoid synthases. In comparison to the transgenic plants, the wild-type plants showed a slight delay in growth and flowering formation. To this end, a gas chromatography-mass spectrometry analysis revealed that SoFLDH transgenic plants were responsible for numerous forms of terpene synthesis, particularly sesquiterpene. These results provide a base for further investigation on SoFLDH gene role and elucidating the regulatory mechanisms for sesquiterpene synthesis in S. offcinalis. And our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. offcinalis.
Collapse
Affiliation(s)
- Mohammed Ali
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Elsayed Nishawy
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Walaa A. Ramadan
- Genetics and Cytology Department, Biotechnology Research institute, National Research Centre, Giza, Egypt
| | - Mohamed Ewas
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Mokhtar Said Rizk
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | | | | | | | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | | | - Fatma A. Ahmed
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Mohamed Hamdy Amar
- Department of Genetic Resources, Desert Research Center, Cairo, Egypt
- * E-mail:
| | - Qing-Feng Wang
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Minzu University, Enshi, China
| |
Collapse
|
4
|
Wang YH, He XH, Yu HX, Mo X, Fan Y, Fan ZY, Xie XJ, Liu Y, Luo C. Overexpression of four MiTFL1 genes from mango delays the flowering time in transgenic Arabidopsis. BMC PLANT BIOLOGY 2021; 21:407. [PMID: 34493220 PMCID: PMC8422776 DOI: 10.1186/s12870-021-03199-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/31/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND TERMINAL FLOWER 1 (TFL1) belongs to the phosphatidylethanolamine-binding protein (PEBP) family, which is involved in inflorescence meristem development and represses flowering in several plant species. In the present study, four TFL1 genes were cloned from the mango (Mangifera indica L.) variety 'SiJiMi' and named MiTFL1-1, MiTFL1-2, MiTFL1-3 and MiTFL1-4. RESULTS Sequence analysis showed that the encoded MiTFL1 proteins contained a conserved PEBP domain and belonged to the TFL1 group. Expression analysis showed that the MiTFL1 genes were expressed in not only vegetative organs but also reproductive organs and that the expression levels were related to floral development. Overexpression of the four MiTFL1 genes delayed flowering in transgenic Arabidopsis. Additionally, MiTFL1-1 and MiTFL1-3 changed the flower morphology in some transgenic plants. Yeast two-hybrid (Y2H) analysis showed that several stress-related proteins interacted with MiTFL1 proteins. CONCLUSIONS The four MiTFL1 genes exhibited a similar expression pattern, and overexpression in Arabidopsis resulted in delayed flowering. Additionally, MiTFL1-1 and MiTFL1-3 overexpression affected floral organ development. Furthermore, the MiTFL1 proteins could interact with bHLH and 14-3-3 proteins. These results indicate that the MiTFL1 genes may play an important role in the flowering process in mango.
Collapse
Affiliation(s)
- Yi-Han Wang
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Hua He
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hai-Xia Yu
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Mo
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan Fan
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhi-Yi Fan
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao-Jie Xie
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan Liu
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
5
|
Adal AM, Binson E, Remedios L, Mahmoud SS. Expression of lavender AGAMOUS-like and SEPALLATA3-like genes promote early flowering and alter leaf morphology in Arabidopsis thaliana. PLANTA 2021; 254:54. [PMID: 34410495 DOI: 10.1007/s00425-021-03703-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The expression of full-length cDNAs encoding lavender AGAMOUS-like (LaAG-like) and SEPALLATA3-like (LaSEP3-like) transcription factors induces early flowering and impacts the leaf morphology at a strong expression level in Arabidopsis. Lavandula angustifolia is widely cultivated as an ornamental plant due to its attractive flower structure, and as a source of valuable essential oils for use in cosmetics, alternative medicines, and culinary products. We recently employed RNA-Seq and transcript profiling to describe a number of transcription factors (TFs) that potentially control flower development in this plant. In this study, we investigated the roles of two TFs, LaAGAMOUS-like (LaAG-like) and LaSEPALLATA3-like (LaSEP3-like), that exhibited substantial homology to Arabidopsis thaliana floral development genes, AGAMOUS and SEPALLATA3, respectively, in flowering initiation in Arabidopsis. We stably and constitutively expressed LaAG-like and LaSEP3-like cDNAs in separate Arabidopsis plants. All transgenic plants flowered earlier than the wild-type controls. However, plants that modestly overexpressed the gene were phenotypically normal, while those that strongly expressed the transgene developed curly leaves. We also assessed the expression of five endogenous flowering time regulating genes, from which high expression of Flowering Locus T (AtFT) mRNA in both LaAG-like (type-I and -II) and LaSEP3-like (type-I), and Leafy (AtLFY) mRNAs in LaSEP3-like (type-I) transgenic plants were detected, compared to wild-type controls. Our results suggest that with controlled expression, lavender AG-like and SEP3-like genes are potentially useful for the regulation of flowering time in commercial lavender species, and could be used for plant improvement studies through molecular genetics and targeted breeding programs.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Elinor Binson
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Lisa Remedios
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
6
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
7
|
Adal AM, Doshi K, Holbrook L, Mahmoud SS. Comparative RNA-Seq analysis reveals genes associated with masculinization in female Cannabis sativa. PLANTA 2021; 253:17. [PMID: 33392743 PMCID: PMC7779414 DOI: 10.1007/s00425-020-03522-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Using RNA profiling, we identified several silver thiosulfate-induced genes that potentially control the masculinization of female Cannabis sativa plants. Genetically female Cannabis sativa plants normally bear female flowers, but can develop male flowers in response to environmental and developmental cues. In an attempt to elucidate the molecular elements responsible for sex expression in C. sativa plants, we developed genetically female lines producing both female and chemically-induced male flowers. Furthermore, we carried out RNA-Seq assays aimed at identifying differentially expressed genes responsible for male flower development in female plants. The results revealed over 10,500 differentially expressed genes, of which around 200 potentially control masculinization of female cannabis plants. These genes include transcription factors and other genes involved in male organ (i.e., anther and pollen) development, as well as genes involved in phytohormone signalling and male-biased phenotypes. The expressions of 15 of these genes were further validated by qPCR assay confirming similar expression patterns to that of RNA-Seq data. These genes would be useful for understanding predisposed plants producing flowers of both sex types in the same plant, and help breeders to regulate the masculinization of female plants through targeted breeding and plant biotechnology.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Ketan Doshi
- Zyus Life Sciences Inc., 204-407 Downey Rd, Saskatoon, SK, Canada
| | - Larry Holbrook
- Zyus Life Sciences Inc., 204-407 Downey Rd, Saskatoon, SK, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|