1
|
Rohida B, Farman M, George A. Unraveling the bioactive constituents of Typha elephantina: A comprehensive phytochemical analysis by tandem mass spectrometry. PLoS One 2024; 19:e0311549. [PMID: 39636832 PMCID: PMC11620470 DOI: 10.1371/journal.pone.0311549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/22/2024] [Indexed: 12/07/2024] Open
Abstract
Phytochemicals derived from plants have gained significant attention in recent years due to their diverse therapeutic properties. Typha elephantina is an aquatic plant having ameliorative characteristics like antioxidant, anti-inflammatory and analgesic etc. This research aims to conduct a comprehensive phytochemical investigation by Tandem mass spectrometry on the aerial parts and roots of Typha elephantina with a focus on identifying and characterizing the bioactive compounds present in it. Maceration in methanol, preliminary, MS/MS analyses and DPPH antioxidant assay were carried out on this plant. This study led to the elucidation of 62 chemical constituents for the first time in Typha elephantina. 36 phytochemical compounds from aerial parts and 26 from roots i.e.,p-coumaric acid, caffeic acid, dihydrocaffeic acid, ferulic acid derivative, dehydroascorbic acid derivative, 1-O-coumaroyl glycerol, glucaroyl-4-hydroxy benzoate, apigenin derivative, 3-O-glucopyranosyl isorhamnetin, isovitexin derivative, rutin, isorhamnetin diglycosides, verbascoside, forsythoside A, pinocembrin, dihydro quercetin, prunetin, ampelopsin, daidzein, genistein, catechin and procyanidin B1 were detected within this plant specimen. The DPPH assay results showed that aerial parts TE(1), TE(2) showed more antioxidant activity than roots TER/MeOH. These might be responsible for the understanding of the therapeutic potential of Typha elephantina and provide a foundation for future pharmacological studies.
Collapse
Affiliation(s)
- Bibi Rohida
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Farman
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Alina George
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
2
|
Liao Y, Wu M, Fan J, Wan J, An X, Li X, Wei Y, Ouyang Z. Mining and characterization of a novel cytochrome P450 MaCYP71BG22 involved in the C4-stereoselective hydroxylation of 1-deoxynojirimycin biosynthesis in mulberry leaves. Int J Biol Macromol 2024; 282:136941. [PMID: 39490858 DOI: 10.1016/j.ijbiomac.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
1-Deoxynojirimycin (DNJ), a primary active component in mulberry leaves, has garnered significant attention due to its unique structure and notable pharmacological properties. Our previous investigations have elucidated the biosynthetic pathways of DNJ from lysine to 2-methylpiperidine. However, the hydroxylation process and its underlying mechanisms remain elusive. In this study, five CYP450s hydroxylase genes significantly correlated (P < 0.05) with DNJ content in mulberry leaves at various time were screened through transcriptome profile. MaCYP71BG22 was first cloned and functionally characterized. This gene was shown to specifically catalyze the stereoselective hydroxylation of (R)-2-methylpiperidine at the C4-position to produce (2R, 4R)-2-methylpiperidin-4-ol. In hairy roots of mulberry, overexpression of MaCYP71BG22 increased DNJ accumulation, while virus-induced gene silencing (VIGS) decreased its production. Furthermore, structural-function analysis pinpointed a critical residue, G460, in MaCYP71BG22, mutation of this residue to G460E enhanced the enzyme's catalytic efficiency. This study represents the first report of a CYP450 hydroxylase involved in the biosynthesis of piperidine alkaloids in mulberry leaves, and demonstrates that MaCYP71BG22 selectively catalyzes the C4-stereoselective hydroxylation of (R)-2-methylpiperidine in DNJ biosynthesis. These findings further elucidate the DNJ biosynthetic pathway and provide new insights into the stereo- and regio-selective hydroxylation abilities of CYP450s hydroxylase in DNJ biosynthesis.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xin An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
An X, Liao Y, Yu Y, Fan J, Wan J, Wei Y, Ouyang Z. Effects of MhMYB1 and MhMYB2 transcription factors on the monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq. PLANTA 2024; 260:3. [PMID: 38767800 DOI: 10.1007/s00425-024-04441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
MAIN CONCLUSION Transcription factors MhMYB1 and MhMYB2 correlate with monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq, which could affect the contents of ( -)-menthol and ( -)-menthone. Mentha haplocalyx Briq., a plant with traditional medicinal and edible uses, is renowned for its rich essential oil content. The distinct functional activities and aromatic flavors of mint essential oils arise from various chemotypes. While the biosynthetic pathways of the main monoterpenes in mint are well understood, the regulatory mechanisms governing different chemotypes remain inadequately explored. In this investigation, we identified and cloned two transcription factor genes from the M. haplocalyx MYB family, namely MhMYB1 (PP236792) and MhMYB2 (PP236793), previously identified by our research group. Bioinformatics analysis revealed that MhMYB1 possesses two conserved MYB domains, while MhMYB2 contains a conserved SANT domain. Yeast one-hybrid (Y1H) analysis results demonstrated that both MhMYB1 and MhMYB2 interacted with the promoter regions of MhMD and MhPR, critical enzymes in the monoterpenoid biosynthesis pathway of M. haplocalyx. Subsequent virus-induced gene silencing (VIGS) of MhMYB1 and MhMYB2 led to a significant reduction (P < 0.01) in the relative expression levels of MhMD and MhPR genes in the VIGS groups of M. haplocalyx. In addition, there was a noteworthy decrease (P < 0.05) in the contents of ( -)-menthol and ( -)-menthone in the essential oil of M. haplocalyx. These findings suggest that MhMYB1 and MhMYB2 transcription factors play a positive regulatory role in ( -)-menthol biosynthesis, consequently influencing the essential oil composition in the l-menthol chemotype of M. haplocalyx. This study serves as a pivotal foundation for unraveling the regulatory mechanisms governing monoterpenoid biosynthesis in different chemotypes of M. haplocalyx.
Collapse
Affiliation(s)
- Xin An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yifan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Liao Y, Du W, Wan J, Fan J, Pi J, Wu M, Wei Y, Ouyang Z. Mining and functional characterization of NADPH-cytochrome P450 reductases of the DNJ biosynthetic pathway in mulberry leaves. BMC PLANT BIOLOGY 2024; 24:133. [PMID: 38395770 PMCID: PMC10885410 DOI: 10.1186/s12870-024-04815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND 1-Deoxynojirimycin (DNJ), the main active ingredient in mulberry leaves, with wide applications in the medicine and food industries due to its significant functions in lowering blood sugar, and lipids, and combating viral infections. Cytochrome P450 is a key enzyme for DNJ biosynthesis, its activity depends on the electron supply of NADPH-cytochrome P450 reductases (CPRs). However, the gene for MaCPRs in mulberry leaves remains unknown. RESULTS In this study, we successfully cloned and functionally characterized two key genes, MaCPR1 and MaCPR2, based on the transcriptional profile of mulberry leaves. The MaCPR1 gene comprised 2064 bp, with its open reading frame (ORF) encoding 687 amino acids. The MaCPR2 gene comprised 2148 bp, and its ORF encoding 715 amino acids. The phylogenetic tree indicates that MaCPR1 and MaCPR2 belong to Class I and Class II, respectively. In vitro, we found that the recombinant enzymes MaCPR2 protein could reduce cytochrome c and ferricyanide using NADPH as an electron donor, while MaCPR1 did not. In yeast, heterologous co-expression indicates that MaCPR2 delivers electrons to MaC3'H hydroxylase, a key enzyme catalyzing the production of chlorogenic acid from 3-O-p-coumaroylquinic acid. CONCLUSIONS These findings highlight the orchestration of hydroxylation process mediated by MaCPR2 during the biosynthesis of secondary metabolite biosynthesis in mulberry leaves. These results provided a foundational understanding for fully elucidating the DNJ biosynthetic pathway within mulberry leaves.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Wenmin Du
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Jilan Pi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Min Wu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR, China.
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR, China.
| |
Collapse
|
5
|
Lu N, Zhang L, Tian Y, Yang J, Zheng S, Wang L, Guo W. Biosynthetic pathways and related genes regulation of bioactive ingredients in mulberry leaves. PLANT SIGNALING & BEHAVIOR 2023; 18:2287881. [PMID: 38014901 PMCID: PMC10761104 DOI: 10.1080/15592324.2023.2287881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Mulberry leaves are served not only as fodder for silkworms but also as potential functional food, exhibiting nutritional and medical benefits due to the complex and diverse constituents, including alkaloids, flavonoids, phenolic acids, and benzofurans, which possess a wide range of biological activities, such as anti-diabete, anti-oxidant, anti-inflammatory, and so on. Nevertheless, compared with the well-studied phytochemistry and pharmacology of mulberry leaves, the current understanding of the biosynthesis mechanisms and regulatory mechanisms of active ingredients in mulberry leaves remain unclear. Natural resources of these active ingredients are limited owing to their low contents in mulberry leaves tissues and the long growth cycle of mulberry. Biosynthesis is emerging as an alternative means for accumulation of the desired high-value compounds, which can broaden channels for their large-scale green productions. Therefore, this review summarizes the recent research advance on the correlative key genes, enzyme biocatalytic reactions and biosynthetic pathways of valuable natural ingredients (i.e. alkaloids, flavonoids, phenolic acids, and benzofurans) in mulberry leaves, thereby offering important insights for their further biomanufacturing.
Collapse
Affiliation(s)
- Na Lu
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yuqing Tian
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jinghua Yang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shicun Zheng
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Liang Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Wei Guo
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|