1
|
Prado J, Knops A. Spatial attention in mental arithmetic: A literature review and meta-analysis. Psychon Bull Rev 2024; 31:2036-2057. [PMID: 38565841 DOI: 10.3758/s13423-024-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
We review the evidence for the conceptual association between arithmetic and space and quantify the effect size in meta-analyses. We focus on three effects: (a) the operational momentum effect (OME), which has been defined as participants' tendency to overestimate results of addition problems and underestimate results of subtraction problems; (b) the arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection or temporal order judgment tasks; and (c) the associations between arithmetic and space observed with eye- and hand-tracking studies. The OME was consistently found in paradigms that provided the participants with numerical response alternatives. The OME shows a large effect size, driven by an underestimation during subtraction while addition was unbiased. In contrast, paradigms in which participants indicated their estimate by transcoding their final estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, eye- and hand-tracking studies point to replicable associations between arithmetic and eye or hand movements. To account for the complexity of the observed pattern, we introduce the Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates central notions of numerical and arithmetic processing and helps identifying which pathway a given paradigm operates on. It proposes that the divergence between OME and arithmetic cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, respectively. Overall, our review and findings clearly support an association between arithmetic and spatial processing.
Collapse
Affiliation(s)
- Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Lyon, France
| | - André Knops
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France.
| |
Collapse
|
2
|
Zhang Y, Ma Y, Zhou X. The association between non-symbolic number comparison and mathematical abilities depends on fluency. Cogn Process 2022; 23:423-439. [PMID: 35704131 DOI: 10.1007/s10339-022-01098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
Abstract
Numerous studies have explored the correlation between non-symbolic number comparison and mathematical abilities in children, but the results have been inconsistent. The underlying mental processing featuring fluency may affect the correlation. The current study tested the fluency hypothesis that non-symbolic number comparison is associated with mathematical fluency in the development of mathematical ability. Non-symbolic number comparison, arithmetic computation, mathematical reasoning, non-symbolic number estimation, symbolic number comparison, and a series of basic cognitive processing tasks, including mental rotation, non-verbal matrix reasoning, and choice reaction time, were administered to 1072 first- to fourth-grade children. The results show that non-symbolic number comparison (measured via numerosity comparison) was the only independent predictor of arithmetic computation in higher grades, even after controlled for age, gender, basic cognitive processing, non-symbolic number estimation (measured via numerosity estimation), and symbolic number comparison (measured via digit comparison). However, it did not correlate with mathematical reasoning in any grade. These findings support the fluency hypothesis for developmental correlation between non-symbolic number comparison and mathematical abilities. That is, non-symbolic number comparison correlates with mathematical ability featuring fluency.
Collapse
Affiliation(s)
- Yiyun Zhang
- School of Psychology, Liaoning Normal University, Liaoning, China.,State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuanyuan Ma
- School of Psychology, Liaoning Normal University, Liaoning, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Research Associationion for Brain and Mathematical Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
3
|
Levy S, Goldfarb L. The perception of subset quantity and items in an environment with distractors in a population with mathematical learning difficulties. Trends Neurosci Educ 2021; 25:100166. [PMID: 34844698 DOI: 10.1016/j.tine.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE People often perceive a quantity of specific objects that appear as part of an overall group of items (a subset). This study investigates this type of perception among a population with mathematical leaning difficulties (MLD). METHOD Sixty-two participants (mean age: 26.82) reported the general and subset quantity of items using a subset quantity detection task or a conjunction visual search task. RESULTS MLD had difficulties perceiving both the general quantity presented and the subset quantity of items. They also had difficulties preforming a conjunction visual search task, even when the task did not involve numerical processing. CONCLUSIONS MLD has spatial difficulties in the form of visual search and subset quantity detection. The current study suggests that MLD might experience greater difficulties in daily tasks, which might be related to those tasks (e.g., detecting the amount of forks among other items of silverware on the table).
Collapse
Affiliation(s)
- Sharon Levy
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel
| | - Liat Goldfarb
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.
| |
Collapse
|
4
|
Semenza C, Benavides-Varela S. Reassessing lateralization in calculation. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0044. [PMID: 29292349 DOI: 10.1098/rstb.2017.0044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2017] [Indexed: 11/12/2022] Open
Abstract
The role of the left hemisphere in calculation has been unequivocally demonstrated in numerous studies in the last decades. The right hemisphere, on the other hand, had been traditionally considered subsidiary to the left hemisphere functions, although its role was less clearly defined. Recent clinical studies as well as investigations conducted with other methodologies (e.g. neuroimaging, transcranial magnetic stimulation and direct cortical electro-stimulation) leave several unanswered questions about the contribution of the right hemisphere in calculation. In particular, novel clinical studies show that right hemisphere acalculia encompasses a wide variety of symptoms, affecting even simple calculation, which cannot be easily attributed to spatial disorders or to a generic difficulty effect as previously believed. The studies reported here also show how the right hemisphere has its own specific role and that only a bilateral orchestration between the respective functions of each hemisphere guarantees, in fact, precise calculation. Vis-à-vis these data, the traditional wisdom that attributes to the right hemisphere a role mostly confined to spatial aspects of calculation needs to be significantly reshaped. The question for the future is whether it is possible to precisely define the specific contribution of the right hemisphere in several aspects of calculation while highlighting the nature of the cross-talk between the two hemispheres.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Carlo Semenza
- Department of Neuroscience, University of Padova, via Giustiniani 5, 35128 Padova, Italy .,IRCCS Ospedale S. Camillo, Lido di Venezia, Italy
| | | |
Collapse
|
5
|
Shaki S, Pinhas M, Fischer MH. Heuristics and biases in mental arithmetic: revisiting and reversing operational momentum. THINKING & REASONING 2017. [DOI: 10.1080/13546783.2017.1348987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel, Israel
| | - Michal Pinhas
- Department of Behavioral Sciences, Ariel University, Ariel, Israel
| | - Martin H. Fischer
- Division of Cognitive Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Liu D, Cai D, Verguts T, Chen Q. The Time Course of Spatial Attention Shifts in Elementary Arithmetic. Sci Rep 2017; 7:921. [PMID: 28424467 PMCID: PMC5430428 DOI: 10.1038/s41598-017-01037-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/22/2017] [Indexed: 11/08/2022] Open
Abstract
It has been proposed that elementary arithmetic induces spatial shifts of attention. However, the timing of this arithmetic-space association remains unknown. Here we investigate this issue with a target detection paradigm. Detecting targets in the right visual field was faster than in the left visual field when preceded by an addition operation, while detecting targets in the left visual field was faster than in the right visual field when preceded by a subtraction operation. The arithmetic-space association was found both at the end of the arithmetic operation and during calculation. In contrast, the processing of operators themselves did not induce spatial biases. Our results suggest that the arithmetic-space association resides in the mental arithmetic operation rather than in the individual numbers or the operators. Moreover, the temporal course of this effect was different in addition and subtraction.
Collapse
Affiliation(s)
- Dixiu Liu
- School of Psychology, South China Normal University, 510631, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Danni Cai
- School of Psychology, South China Normal University, 510631, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Qi Chen
- School of Psychology, South China Normal University, 510631, Guangzhou, China.
- Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
7
|
Liu J, Zhang H, Chen C, Chen H, Cui J, Zhou X. The neural circuits for arithmetic principles. Neuroimage 2017; 147:432-446. [DOI: 10.1016/j.neuroimage.2016.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022] Open
|
8
|
Zhang Y, Chen C, Liu H, Cui J, Zhou X. Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. JOURNAL OF COGNITIVE PSYCHOLOGY 2016. [DOI: 10.1080/20445911.2016.1205074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Masson N, Pesenti M, Dormal V. Impact of optokinetic stimulation on mental arithmetic. PSYCHOLOGICAL RESEARCH 2016; 81:840-849. [DOI: 10.1007/s00426-016-0784-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/19/2016] [Indexed: 11/29/2022]
|
10
|
Exploring the numerical mind by eye-tracking: a special issue. PSYCHOLOGICAL RESEARCH 2016; 80:325-33. [PMID: 26927470 DOI: 10.1007/s00426-016-0759-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
|
11
|
Macchi Cassia V, McCrink K, de Hevia MD, Gariboldi V, Bulf H. Operational momentum and size ordering in preverbal infants. PSYCHOLOGICAL RESEARCH 2016; 80:360-7. [PMID: 26898647 DOI: 10.1007/s00426-016-0750-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Recent evidence has shown that, like adults and children, 9-month-old infants manifest an operational momentum (OM) effect during non-symbolic arithmetic, whereby they overestimate the outcomes to addition problems, and underestimate the outcomes to subtraction problems. Here we provide the first evidence that OM occurs for transformations of non-numerical magnitudes (i.e., spatial extent) during ordering operations. Twelve-month-old infants were tested in an ordinal task in which they detected and represented ascension or descension in physical size, and then responded to ordinal sequences that exhibited greater or lesser sizes. Infants displayed longer looking time to the size change whose direction violated the operational momentum experienced during habituation (i.e., the smaller sequence in the ascension condition and the larger sequence in the descension condition). The presence of momentum for ordering size during infancy suggests that continuous quantities are represented spatially during the first year of life.
Collapse
Affiliation(s)
- Viola Macchi Cassia
- Department of Psychology, University of Milan-Bicocca, Piazza Ateneo Nuovo 1 (U6), 20126, Milan, Italy.
- NeuroMi, Milan Center for Neuroscience, Milan, Italy.
| | - Koleen McCrink
- Department of Psychology, Barnard College, Columbia University, New York, USA
| | - Maria Dolores de Hevia
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- CNRS UMR 8242, Laboratoire Psychologie de la Perception, Paris, France
| | - Valeria Gariboldi
- Department of Psychology, University of Milan-Bicocca, Piazza Ateneo Nuovo 1 (U6), 20126, Milan, Italy
| | - Hermann Bulf
- Department of Psychology, University of Milan-Bicocca, Piazza Ateneo Nuovo 1 (U6), 20126, Milan, Italy
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
12
|
Mock J, Huber S, Klein E, Moeller K. Insights into numerical cognition: considering eye-fixations in number processing and arithmetic. PSYCHOLOGICAL RESEARCH 2016; 80:334-59. [DOI: 10.1007/s00426-015-0739-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022]
|
13
|
Voluntary eye movements direct attention on the mental number space. PSYCHOLOGICAL RESEARCH 2016; 80:389-98. [DOI: 10.1007/s00426-015-0741-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
14
|
Myachykov A, Ellis R, Cangelosi A, Fischer MH. Ocular drift along the mental number line. PSYCHOLOGICAL RESEARCH 2016; 80:379-88. [PMID: 26724955 PMCID: PMC4826417 DOI: 10.1007/s00426-015-0731-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022]
Abstract
We examined the spontaneous association between numbers and space by documenting attention deployment and the time course of associated spatial-numerical mapping with and without overt oculomotor responses. In Experiment 1, participants maintained central fixation while listening to number names. In Experiment 2, they made horizontal target-direct saccades following auditory number presentation. In both experiments, we continuously measured spontaneous ocular drift in horizontal space during and after number presentation. Experiment 2 also measured visual-probe-directed saccades following number presentation. Reliable ocular drift congruent with a horizontal mental number line emerged during and after number presentation in both experiments. Our results provide new evidence for the implicit and automatic nature of the oculomotor resonance effect associated with the horizontal spatial-numerical mapping mechanism.
Collapse
Affiliation(s)
- Andriy Myachykov
- Department of Psychology, Northumbria University, Northumberland Building, Newcastle upon Tyne, NE1 8ST, UK. .,Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation.
| | - Rob Ellis
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Angelo Cangelosi
- School of Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Martin H Fischer
- Division of Cognitive Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|