1
|
Marlair C, Lochy A, Crollen V. Frequency-tagging EEG reveals the effect of attentional focus on abstract magnitude processing. Psychon Bull Rev 2024; 31:2266-2274. [PMID: 38467991 DOI: 10.3758/s13423-024-02480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/13/2024]
Abstract
While humans can readily access the common magnitude of various codes such as digits, number words, or dot sets, it remains unclear whether this process occurs automatically, or only when explicitly attending to magnitude information. We addressed this question by examining the neural distance effect, a robust marker of magnitude processing, with a frequency-tagging approach. Electrophysiological responses were recorded while participants viewed rapid sequences of a base numerosity presented at 6 Hz (e.g., "2") in randomly mixed codes: digits, number words, canonical dot, and finger configurations. A deviant numerosity either close (e.g., "3") or distant (e.g., "8") from the base was inserted every five items. Participants were instructed to focus their attention either on the magnitude number feature (from a previous study), the parity number feature, a nonnumerical color feature or no specific feature. In the four attentional conditions, we found clear discrimination responses of the deviant numerosity despite its code variation. Critically, the distance effect (larger responses when base/deviant are distant than close) was present when participants were explicitly attending to magnitude and parity, but it faded with color and simple viewing instructions. Taken together, these results suggest automatic access to an abstract number representation but highlight the role of selective attention in processing the underlying magnitude information. This study therefore provides insights into how attention can modulate the neural activity supporting abstract magnitude processing.
Collapse
Affiliation(s)
- Cathy Marlair
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium.
| | - Aliette Lochy
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Cognitive Science and Assessment, Department of Behavioral and Cognitive Sciences, Faculty of Humanities, Social and Educational Sciences, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Feder A, Cohen-Gutman S, Lozin M, Pinhas M. Place-value and physical size converge in automatic processing of multi-digit numbers. Mem Cognit 2024; 52:1001-1016. [PMID: 38198105 DOI: 10.3758/s13421-023-01515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Previous research has shown that multi-digit number processing is modulated by both place-value and physical size of the digits. By pitting place-value against physical size, the present study examined whether one of the attributes had a greater impact on the automatic processing of multi-digit numbers. In three experiments, participants were presented with two-digit number pairs that appeared in frames. They were instructed to select the larger frame while ignoring the numbers within the frames. Importantly, we manipulated the physical size of the digits (i.e., both decade/unit digits were physically larger) within the frames, the unit-decade compatibility (i.e., the relationship between the numerical values of both decade and unit digits was consistent or inconsistent), and the congruity between the numerical values of the decade digits and the frames' physical size (i.e., decade-value-frame-size congruity). In Experiment 1, where all pairs were unit-decade compatible, a decade-value-frame-size congruity effect emerged for pairs with physically larger decade, but not unit, digits. However, when adding unit-decade incompatible pairs (Experiments 2-3), in unit-decade compatible pairs, there was a decade-value-frame-size congruity effect regardless of the digits' physical size. In contrast, in unit-decade incompatible pairs, there was no decade-value-frame-size congruity effect, even when the physically larger digit (i.e., unit) contradicted the place-value information, presumably due to the cancellation of the opposing influences of the digits' physical sizes their place-values. Overall, these findings suggest that place-value and physical size are intertwined in the Hindu-Arabic numerical system and are processed as one.
Collapse
Affiliation(s)
- Ami Feder
- Department of Psychology, Ariel University, 4070000, Ariel, Israel
| | | | - Mariya Lozin
- Department of Psychology, Ariel University, 4070000, Ariel, Israel
| | - Michal Pinhas
- Department of Psychology, Ariel University, 4070000, Ariel, Israel.
| |
Collapse
|
3
|
García-Orza J, Gutiérrez-Cordero I, Larios C, Csilinkó A, Álvarez-Montesinos JA. Length is not all that matters: testing the role of number identity and the ratio of fillers in comparisons of multi-digits with different digit length. PSYCHOLOGICAL RESEARCH 2023; 87:176-193. [PMID: 35178620 PMCID: PMC8853871 DOI: 10.1007/s00426-022-01655-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Research in multi-digit number comparison usually considers stimuli with the same number of digits (e.g., 3452 vs. 7831). Surprisingly, there is almost no research on the comparison of numbers that differ in length (e.g., 995 vs. 1000), which demands a focus on the number of digits in each multi-digit, despite the fact that the role of number length has been explicitly acknowledged in componential models of multi-digit processing. Our study explores whether the comparison of pairs of natural numbers that differ in length is affected by the identity of the leftmost digit of each multi-digit, and asks what is the effect of having variable proportions of trials with pairs of numbers of the same-length in the task. Across three studies participants compared numbers in blocks with different proportions of same-length multi-digit pairs (Experiment 1 and 2: 25% vs. 50% vs. 75%; Experiment 3: 0% vs. 50%). Stimuli in the different-length condition were length-digit congruent (the number with more digits starting with a larger digit: 2384 vs. 107) or length-digit incongruent (the number with more digits starting with a smaller number: 2675 vs. 398). Response times were shorter in length-digit congruent pairs than in the incongruent pairs. Unexpectedly, this effect was only slightly modulated by the proportion of same-/different-length multi-digit pairs in the experimental set. Despite its perceptual saliency, length is not the only information considered when comparing different-length numbers. The leftmost-digit is also taken into account, with variable relevance here, depending on the characteristics of the stimuli set.
Collapse
Affiliation(s)
- Javier García-Orza
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain.
| | - Ismael Gutiérrez-Cordero
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Carlos Larios
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Anikó Csilinkó
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | | |
Collapse
|
4
|
Feder A, Lozin M, Pinhas M. No power: exponential expressions are not processed automatically as such. PSYCHOLOGICAL RESEARCH 2021; 85:2079-2097. [PMID: 32705335 DOI: 10.1007/s00426-020-01381-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
Little is known about the mental representation of exponential expressions. The present study examined the automatic processing of exponential expressions under the framework of multi-digit numbers, specifically asking which component of the expression (i.e., the base/power) is more salient during this type of processing. In a series of three experiments, participants performed a physical size comparison task. They were presented with pairs of exponential expressions that appeared in frames that differed in their physical sizes. Participants were instructed to ignore the stimuli within the frames and choose the larger frame. In all experiments, the pairs of exponential expressions varied in the numerical values of their base and/or power component. We manipulated the compatibility between the base and the power components, as well as their physical sizes to create a standard versus nonstandard syntax of exponential expressions. Experiments 1 and 3 demonstrate that the physically larger component drives the size congruity effect, which is typically the base but was manipulated here in some cases to be the power. Moreover, Experiments 2 and 3 revealed similar patterns, even when manipulating the compatibility between base and power components. Our findings support componential processing of exponents by demonstrating that participants were drawn to the physically larger component, even though in exponential expressions, the power, which is physically smaller, has the greater mathematical contribution. Thus, revealing that the syntactic structure of an exponential expression is not processed automatically. We discuss these results with regard to multi-digit numbers research.
Collapse
Affiliation(s)
- Ami Feder
- Department of Behavioral Sciences, Ariel University, 40700, Ariel, Israel.
| | - Mariya Lozin
- Department of Behavioral Sciences, Ariel University, 40700, Ariel, Israel
| | - Michal Pinhas
- Department of Behavioral Sciences, Ariel University, 40700, Ariel, Israel
| |
Collapse
|
5
|
Measuring spontaneous and automatic processing of magnitude and parity information of Arabic digits by frequency-tagging EEG. Sci Rep 2020; 10:22254. [PMID: 33335293 PMCID: PMC7747728 DOI: 10.1038/s41598-020-79404-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Arabic digits (1–9) are everywhere in our daily lives. These symbols convey various semantic information, and numerate adults can easily extract from them several numerical features such as magnitude and parity. Nonetheless, since most studies used active processing tasks to assess these properties, it remains unclear whether and to what degree the access to magnitude and especially to parity is automatic. Here we investigated with EEG whether spontaneous processing of magnitude or parity can be recorded in a frequency-tagging approach, in which participants are passively stimulated by fast visual sequences of Arabic digits. We assessed automatic magnitude processing by presenting a stream of frequent small digit numbers mixed with deviant large digits (and the reverse) with a sinusoidal contrast modulation at the frequency of 10 Hz. We used the same paradigm to investigate numerical parity processing, contrasting odd digits to even digits. We found significant brain responses at the frequency of the fluctuating change and its harmonics, recorded on electrodes encompassing right occipitoparietal regions, in both conditions. Our findings indicate that both magnitude and parity are spontaneously and unintentionally extracted from Arabic digits, which supports that they are salient semantic features deeply associated to digit symbols in long-term memory.
Collapse
|
6
|
A gifted SNARC? Directional spatial-numerical associations in gifted children with high-level math skills do not differ from controls. PSYCHOLOGICAL RESEARCH 2020; 85:1645-1661. [PMID: 32448946 PMCID: PMC8211597 DOI: 10.1007/s00426-020-01354-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 12/31/2022]
Abstract
The SNARC (Spatial-Numerical Association of Response Codes) effect (i.e., a tendency to associate small/large magnitude numbers with the left/right hand side) is prevalent across the whole lifespan. Because the ability to relate numbers to space has been viewed as a cornerstone in the development of mathematical skills, the relationship between the SNARC effect and math skills has been frequently examined. The results remain largely inconsistent. Studies testing groups of people with very low or very high skill levels in math sometimes found relationships between SNARC and math skills. So far, however, studies testing such extreme math skills level groups were mostly investigating the SNARC effect in individuals revealing math difficulties. Groups with above average math skills remain understudied, especially in regard to children. Here, we investigate the SNARC effect in gifted children, as compared to normally developing children (overall n = 165). Frequentist and Bayesian analysis suggested that the groups did not differ from each other in the SNARC effect. These results are the first to provide evidence for the SNARC effect in a relatively large sample of gifted (and mathematically highly skilled) children. In sum, our study provides another piece of evidence for no direct link between the SNARC effect and mathematical ability in childhood.
Collapse
|