1
|
Shi C, Chen S, Liu H, Pan R, Li S, Wang Y, Wu X, Li J, Li X, Xing C, Liu X, Wang Y, Qu Q, Li G. Evolution of the gene regulatory network of body axis by enhancer hijacking in amphioxus. eLife 2024; 13:e89615. [PMID: 38231024 DOI: 10.7554/elife.89615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
A central goal of evolutionary developmental biology is to decipher the evolutionary pattern of gene regulatory networks (GRNs) that control embryonic development, and the mechanism underlying GRNs evolution. The Nodal signaling that governs the body axes of deuterostomes exhibits a conserved GRN orchestrated principally by Nodal, Gdf1/3, and Lefty. Here we show that this GRN has been rewired in cephalochordate amphioxus. We found that while the amphioxus Gdf1/3 ortholog exhibited nearly no embryonic expression, its duplicate Gdf1/3-like, linked to Lefty, was zygotically expressed in a similar pattern as Lefty. Consistent with this, while Gdf1/3-like mutants showed defects in axial development, Gdf1/3 mutants did not. Further transgenic analyses showed that the intergenic region between Gdf1/3-like and Lefty could drive reporter gene expression as that of the two genes. These results indicated that Gdf1/3-like has taken over the axial development role of Gdf1/3 in amphioxus, possibly through hijacking Lefty enhancers. We finally demonstrated that, to compensate for the loss of maternal Gdf1/3 expression, Nodal has become an indispensable maternal factor in amphioxus and its maternal mutants caused axial defects as Gdf1/3-like mutants. We therefore demonstrated a case that the evolution of GRNs could be triggered by enhancer hijacking events. This pivotal event has allowed the emergence of a new GRN in extant amphioxus, presumably through a stepwise process. In addition, the co-expression of Gdf1/3-like and Lefty achieved by a shared regulatory region may have provided robustness during body axis formation, which provides a selection-based hypothesis for the phenomena called developmental system drift.
Collapse
Affiliation(s)
- Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huimin Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanhui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingjing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xuewen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chaofan Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Tokuoka M, Kobayashi K, Lemaire P, Satou Y. Protein kinases and protein phosphatases encoded in the Ciona robusta genome. Genesis 2022; 60:e23471. [PMID: 35261143 DOI: 10.1002/dvg.23471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Protein kinases (PKs) and protein phosphatases (PPs) regulate the phosphorylation of proteins that are involved in a variety of biological processes. To study such biological processes systematically, it is important to know the whole repertoire of PKs and PPs encoded in a genome. In the present study, we surveyed the genome of an ascidian (Ciona robusta or Ciona intestinalis type A) to comprehensively identify the genes that encoded PKs and PPs. Because ascidians belong to the sister group of vertebrates, a comparison of the whole repertoire of PKs and PPs of ascidians with those of vertebrates may help to delineate the complements of these proteins that were present in the last common ancestor of these two groups of animals. Our results show that the repertory of PPs was much more expanded in vertebrates than the repertory of PKs. We also showed that approximately 75% of PKs and PPs were expressed during development from eggs to larvae. Thus, the present study provides catalogs for PKs and PPs encoded in the ascidian genome. These catalogs will be useful for systematic studies of biological processes that involve phosphorylation and for evolutionary studies of the origin of vertebrates.
Collapse
Affiliation(s)
- Miki Tokuoka
- Institut de Biologie du Développement de Marseille (IBDM), CNRS, Aix-Marseille Université, Marseille, France.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kenji Kobayashi
- Institut de Biologie du Développement de Marseille (IBDM), CNRS, Aix-Marseille Université, Marseille, France.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Patrick Lemaire
- Institut de Biologie du Développement de Marseille (IBDM), CNRS, Aix-Marseille Université, Marseille, France.,Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, Hisata K, Takeda H, Satoh N. A Nearly Complete Genome of Ciona intestinalis Type A (C. robusta) Reveals the Contribution of Inversion to Chromosomal Evolution in the Genus Ciona. Genome Biol Evol 2020; 11:3144-3157. [PMID: 31621849 PMCID: PMC6836712 DOI: 10.1093/gbe/evz228] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution. Here, we provide a new genome assembly for an inbred line of this animal, constructed with short and long sequencing reads and Hi-C data. In this latest assembly, over 95% of the 123 Mb of sequence data was included in the chromosomes. Short sequencing reads predicted a genome size of 114-120 Mb; therefore, it is likely that the current assembly contains almost the entire genome, although this estimate of genome size was smaller than previous estimates. Remapping of the Hi-C data onto the new assembly revealed a large inversion in the genome of the inbred line. Moreover, a comparison of this genome assembly with that of Ciona savignyi, a different species in the same genus, revealed many chromosomal inversions between these two Ciona species, suggesting that such inversions have occurred frequently and have contributed to chromosomal evolution of Ciona species. Thus, the present assembly greatly improves an essential resource for genome-wide studies of ascidians.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Liu B, Satou Y. The genetic program to specify ectodermal cells in ascidian embryos. Dev Growth Differ 2020; 62:301-310. [PMID: 32130723 DOI: 10.1111/dgd.12660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
6
|
Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Curr Top Dev Biol 2020; 139:1-33. [DOI: 10.1016/bs.ctdb.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Abstract
The BMP signaling pathway has been shown to be involved in different aspects of embryonic development across diverse metazoan phyla. Comparative studies on the roles of the BMP signaling pathway provide crucial insights into the evolution of the animal body plans. In this chapter, we present the general workflow on how to investigate the roles of BMP signaling pathway during amphioxus embryonic development. As amphioxus are basal invertebrate chordates, studies on the BMP signaling pathway in amphioxus could elucidate the functional evolution of BMP pathway in the chordate group. Here, we describe methods for animal husbandry, spawning induction, and manipulation of the BMP signaling pathway during embryonic development through drug inhibitors and recombinant proteins. We also introduce an efficient method of using mesh baskets to handle amphioxus embryos for fluorescence immunostaining and multicolor fluorescence in situ hybridization and to assay the effects of manipulating BMP signaling pathway during amphioxus embryogenesis.
Collapse
|
8
|
Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera. Gene Expr Patterns 2016; 21:19-27. [PMID: 27346542 DOI: 10.1016/j.gep.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022]
Abstract
By the initial phase of gastrulation, Wnt pathway regulation mediates endomesoderm specification and establishes the animal-vegetal axis, thereby leading to proper gastrulation in starfish. To provide insight into the ancestral mechanism regulating deuterostome gastrulation, we identified the gene expression patterns of Wnt, Frizzled (Fz), and secreted frizzled-related protein (sFRP) family genes, which play a role in the initial stage of the Wnt pathway, in starfish Patiria (Asterina) pectinifera embryos using whole mount in situ hybridization. We identified ten Wnt, four Fz, and two sFRP paralogues. From the hatching blastula to the late gastrula stage, the majority of the Wnt genes and both Fz5/8 and sFRP1/5 were expressed in the posterior and anterior half of the embryo, respectively. Wnt8, Fz1, and Fz4 showed restricted expression in the lateral ectoderm. On the other hand, several genes were expressed de novo in the restricted domain of the archenteron at the late gastrula stage. These results suggest that the canonical and/or non-canonical Wnt pathway might implicate endomesoderm specification, anterior-posterior axis establishment, anterior-posterior patterning, and archenteron morphogenesis in the developmental context of starfish embryos. From comparison with the expression patterns observed in Patria miniata, we consider that the Wnt pathway is conserved among starfishes.
Collapse
|
9
|
A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis. Dev Biol 2015; 404:149-63. [PMID: 26025923 PMCID: PMC4528069 DOI: 10.1016/j.ydbio.2015.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.
Collapse
|
10
|
Kawai N, Ogura Y, Ikuta T, Saiga H, Hamada M, Sakuma T, Yamamoto T, Satoh N, Sasakura Y. Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 2015; 403:43-56. [PMID: 25888074 DOI: 10.1016/j.ydbio.2015.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
Hox cluster genes play crucial roles in development of the metazoan antero-posterior axis. Functions of Hox genes in patterning the central nervous system and limb buds are well known. They are also expressed in chordate endodermal tissues, where their roles in endodermal development are still poorly understood. In the invertebrate chordate, Ciona intestinalis, endodermal tissues are in a premature state during the larval stage, and they differentiate into the digestive tract during metamorphosis. In this study, we showed that disruption of a Hox gene, Ci-Hox10, prevented intestinal formation. Ci-Hox10-knock-down larvae displayed defective migration of endodermal strand cells. Formation of a protrusion, which is important for cell migration, was disrupted in these cells. The collagen type IX gene is a downstream target of Ci-Hox10, and is negatively regulated by Ci-Hox10 and a matrix metalloproteinase ortholog, prior to endodermal cell migration. Inhibition of this regulation prevented cellular migration. These results suggest that Ci-Hox10 regulates endodermal strand cell migration by forming a protrusion and by reconstructing the extracellular matrix.
Collapse
Affiliation(s)
- Narudo Kawai
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| | - Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiohji, Tokyo 192-0397, Japan; Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiohji, Tokyo 192-0397, Japan
| | - Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
11
|
Satou Y, Imai KS. Gene regulatory systems that control gene expression in the Ciona embryo. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:33-51. [PMID: 25748582 PMCID: PMC4406867 DOI: 10.2183/pjab.91.33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University; CREST, JST, Saitama, Japan.
| | | |
Collapse
|
12
|
Li KL, Lu TM, Yu JK. Genome-wide survey and expression analysis of the bHLH-PAS genes in the amphioxus Branchiostoma floridae reveal both conserved and diverged expression patterns between cephalochordates and vertebrates. EvoDevo 2014; 5:20. [PMID: 24959341 PMCID: PMC4066832 DOI: 10.1186/2041-9139-5-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023] Open
Abstract
Background The bHLH-PAS transcription factors are found in both protostomes and deuterostomes. They are involved in many developmental and physiological processes, including regional differentiation of the central nervous system, tube-formation, hypoxia signaling, aromatic hydrocarbon sensing, and circadian rhythm regulation. To understand the evolution of these genes in chordates, we analyzed the bHLH-PAS genes of the basal chordate amphioxus (Branchiostoma floridae). Results From the amphioxus draft genome database, we identified ten bHLH-PAS genes, nine of which could be assigned to known orthologous families. The tenth bHLH-PAS gene could not be assigned confidently to any known bHLH family; however, phylogenetic analysis clustered this gene with arthropod Met family genes and two spiralian bHLH-PAS-containing sequences, suggesting that they may share the same ancestry. We examined temporal and spatial expression patterns of these bHLH-PAS genes in developing amphioxus embryos. We found that BfArnt, BfNcoa, BfSim, and BfHifα were expressed in the central nervous system in patterns similar to those of their vertebrate homologs, suggesting that their functions may be conserved. By contrast, the amphioxus BfAhr and BfNpas4 had expression patterns distinct from those in vertebrates. These results imply that there were changes in gene regulation after the divergence of cephalochordates and vertebrates. Conclusions We have identified ten bHLH-PAS genes from the amphioxus genome and determined the embryonic expression profiles for these genes. In addition to the nine currently recognized bHLH-PAS families, our survey suggests that the BfbHLHPAS-orphan gene along with arthropod Met genes and the newly identified spiralian bHLH-PAS-containing sequences represent an ancient group of genes that were lost in the vertebrate lineage. In a comparison with the expression patterns of the vertebrate bHLH-PAS paralogs, which are the result of whole-genome duplication, we found that although several members seem to retain conserved expression patterns during chordate evolution, many duplicated paralogs may have undergone subfunctionalization and neofunctionalization in the vertebrate lineage. In addition, our survey of amphioxus bHLH-PAS gene models from genome browser with experimentally verified cDNA sequences calls into question the accuracy of the current in silico gene annotation of the B. floridae genome.
Collapse
Affiliation(s)
- Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan ; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan ; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Matsuoka T, Ikeda T, Fujimaki K, Satou Y. Transcriptome dynamics in early embryos of the ascidian, Ciona intestinalis. Dev Biol 2013; 384:375-85. [PMID: 24120375 DOI: 10.1016/j.ydbio.2013.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 11/25/2022]
Abstract
Maternally provided mRNAs and proteins direct early development and activate the zygotic genome. Using microarrays, we examined the dynamics of transcriptomes during the early development of a basal chordate, Ciona intestinalis. Microarray analysis of unfertilized eggs, as well as 8-, and 16- and 32-cell embryos revealed that nearly half of the genes encoded in the genome were expressed maternally, and that approximately only one-fourth of these genes were expressed at similar levels among eggs obtained from different individuals. Genes encoding proteins involved in protein phosphorylation were enriched in this latter group. More than 90% of maternal RNAs were not reduced before the 16-cell stage when the zygotic developmental program begins. Additionally we obtained gene expression profiles of individual blastomeres from the 8- and 16-cell embryos. On the basis of these profiles, we concluded that the posterior-most localization, which has been reported for over 20 different transcripts, is the only major localization pattern of maternal transcripts. Our data also showed that maternal factors establish only nine distinct patterns of zygotic gene expression at the 16-cell stage. Therefore, one of the main developmental functions of maternally supplied information is to establish these nine distinct expression patterns in the 16-cell embryo. The dynamics of transcriptomes in early-stage embryos provides a foundation for studying how maternal information starts the zygotic program.
Collapse
Affiliation(s)
- Terumi Matsuoka
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
14
|
Enhancer activity sensitive to the orientation of the gene it regulates in the chordate genome. Dev Biol 2012; 375:79-91. [PMID: 23274690 DOI: 10.1016/j.ydbio.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/22/2012] [Accepted: 12/13/2012] [Indexed: 12/26/2022]
Abstract
Enhancers are flexible in terms of their location and orientation relative to the genes they regulate. However, little is known about whether the flexibility can be applied in every combination of enhancers and genes. Enhancer detection with transposable elements is a powerful method to identify enhancers in the genome and to create marker lines expressing fluorescent proteins in a tissue-specific manner. In the chordate Ciona intestinalis, this method has been established with a Tc1/mariner superfamily transposon Minos. Previously, we created the enhancer detection line E[MiTSAdTPOG]15 (E15) that specifically expresses green fluorescent protein (GFP) in the central nervous system (CNS) after metamorphosis. In this study, we identified the causal insertion site of the transgenic line. There are two genes flanking the causal insertion of the E15 line, and the genomic region around the insertion site contains the enhancers responsible for the expression in the endostyle and gut in addition to the CNS. We found that the endostyle and gut enhancers show sensitivity to the orientation of the GFP gene for their enhancer activity. Namely, the enhancers cannot enhance the expression of GFP which is inserted at the same orientation as the E15 line, while the enhancers can enhance GFP expression inserted at the opposite orientation. The CNS enhancer can enhance GFP expression in both orientations. The DNA element adjacent to the endostyle enhancer is responsible for the orientation sensitivity of the enhancer. The different sensitivity of the enhancers to the orientation of the transgene is a cause of CNS-specific GFP expression in the E15 line.
Collapse
|
15
|
Imai KS, Daido Y, Kusakabe TG, Satou Y. Cis-acting transcriptional repression establishes a sharp boundary in chordate embryos. Science 2012; 337:964-7. [PMID: 22923581 DOI: 10.1126/science.1222488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The function of bone morphogenetic protein (BMP) signaling in dorsoventral (DV) patterning of animal embryos is conserved among Bilateria. In vertebrates, the BMP ligand antidorsalizing morphogenetic protein (Admp) is expressed dorsally and moves to the opposite side to specify the ventral fate. Here, we show that Pinhead is an antagonist specific for Admp with a role in establishing the DV axis of the trunk epidermis in embryos of the ascidian Ciona intestinalis. Pinhead and Admp exist in tandem in the genomes of various animals from arthropods to vertebrates. This genomic configuration is important for mutually exclusive expression of these genes, because Pinhead transcription directly disturbs the action of the Admp enhancer. Our data suggest that this dual negative regulatory mechanism is widely conserved in animals.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Biodiversity, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
16
|
Lu TM, Luo YJ, Yu JK. BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development 2012; 139:2020-30. [PMID: 22535413 DOI: 10.1242/dev.073833] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.
Collapse
Affiliation(s)
- Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | | | | |
Collapse
|
17
|
Yoshida R, Sasakura Y. Establishment of enhancer detection lines expressing GFP in the gut of the ascidian Ciona intestinalis. Zoolog Sci 2012; 29:11-20. [PMID: 22233491 DOI: 10.2108/zsj.29.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gut is a tubular, endodermal organ for digesting food and absorbing nutrients. In this study, we characterized eight enhancer detection lines that express green fluorescent protein (GFP) in the whole or part of the digestive tube of the ascidian Ciona intestinalis. Three enhancer detection lines for the pyloric gland, a structure associated with the digestive tube, were also analyzed. These lines are valuable markers for analyzing the mechanisms of development of the gut. Based on the GFP expression of the enhancer detection lines together with morphological characteristics, the digestive tube of Ciona can be subdivided into at least 10 compartments in which different genetic cascades operate. Causal insertion sites of the enhancer detection lines were identified, and the expression pattern of the genes near the insertion sites were characterized by means of whole-mount in situ hybridization. We have characterized four and two genes that were specifically or strongly expressed in the digestive tube and pyloric gland, respectively. The present data provide the basic information and useful resources for studying gut formation in Ciona.
Collapse
Affiliation(s)
- Reiko Yoshida
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | | |
Collapse
|
18
|
Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila. PLoS One 2010; 5:e14323. [PMID: 21179520 PMCID: PMC3002276 DOI: 10.1371/journal.pone.0014323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS The newly described homeobox gene, termed lateral muscles scarcer (lms), which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT) muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs), which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE We have identified the homeobox gene lms as a new muscle identity gene and show that it interacts with various previously-characterized muscle identity genes to regulate normal formation of embryonic lateral transverse muscles. In addition, the direct flight muscles in the adults require lms for reliably exerting their functions in controlling wing postures.
Collapse
|
19
|
Sasakura Y, Yaguchi J, Yaguchi S, Yajima M. Excision and transposition activity of Tc1/mariner superfamily transposons in sea urchin embryos. Zoolog Sci 2010; 27:256-62. [PMID: 20192694 DOI: 10.2108/zsj.27.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tc1/mariner superfamily transposons are used as transformation vectors in various model organisms. The utility of this transposon family is evidenced by the fact that Tc1/mariner transposons have loose host specificity. However, the activity of these transposons has been observed in only a few organisms, and a recent study in the ascidian Ciona intestinalis suggests that not all Tc1/ mariner transposons show loose host specificity. To understand host specificity, we used sea urchins, since they have a long history as materials of embryology and developmental biology. Transposon techniques have not been reported in this organism, despite the likelihood that these techniques would open up many experimental possibilities. Here we tested the activity of three Tc1/ mariner transposons (Minos, Sleeping Beauty, and Frog Prince) in the sea urchin Hemicentrotus pulcherrimus. Minos has both excision and transposition activity in H. pulcherrimus embryos, whereas no excision activity was detected for Sleeping Beauty or Frog Prince. This study suggests that Minos is active in a broad range of non-host organisms and can be used as a transformation tool in sea urchin embryos.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | |
Collapse
|
20
|
The amphioxus genome sequence illuminates the evolutionary origin of vertebrates. Dev Genes Evol 2008; 218:575-8. [PMID: 18949483 DOI: 10.1007/s00427-008-0263-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|