1
|
Bruce HS, Patel NH. Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments. Nat Ecol Evol 2020; 4:1703-1712. [PMID: 33262517 DOI: 10.1038/s41559-020-01349-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/15/2020] [Indexed: 01/06/2023]
Abstract
The origin of insect wings has long been debated. Central to this debate is whether wings are a novel structure on the body wall resulting from gene co-option, or evolved from an exite (outgrowth; for example, a gill) on the leg of an ancestral crustacean. Here, we report the phenotypes for the knockout of five leg patterning genes in the crustacean Parhyale hawaiensis and compare these with their previously published phenotypes in Drosophila and other insects. This leads to an alignment of insect and crustacean legs that suggests that two leg segments that were present in the common ancestor of insects and crustaceans were incorporated into the insect body wall, moving the proximal exite of the leg dorsally, up onto the back, to later form insect wings. Our results suggest that insect wings are not novel structures, but instead evolved from existing, ancestral structures.
Collapse
Affiliation(s)
- Heather S Bruce
- University of California, Berkeley, Berkeley, CA, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Sun DA, Patel NH. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e355. [PMID: 31183976 PMCID: PMC6772994 DOI: 10.1002/wdev.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Nipam H Patel
- Marine Biological Laboratory, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife 2018; 7:34410. [PMID: 29595475 PMCID: PMC5929908 DOI: 10.7554/elife.34410] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. During early life, animals develop from a single fertilized egg cell to hundreds, millions or even trillions of cells. These cells specialize to do different tasks; forming different tissues and organs like muscle, skin, lungs and liver. For more than a century, scientists have strived to understand the details of how animal cells become different and specialize, and have created many new techniques and technologies to help them achieve this goal. Limbs – such as arms, legs and wings – form from small lumps of cells called limb buds. Scientists use the shrimp-like crustacean, Parhyale hawaiensis, to study development, including limb growth. This species is useful because it is easy to grow, manipulate and observe its developing young in the laboratory. Understanding how its limbs develop offers important new insights into how limbs develop in other animals too. Wolff, Tinevez, Pietzsch et al. have now combined advanced microscopy with custom computer software, called Massive Multi-view Tracker (MaMuT) to investigate this. As limbs develop in Parhyale, the MaMuT software tracks how cells behave, and how they are organized. This analysis revealed that for cells to produce a limb bud, they need to split at an early stage into separate groups. These groups are organized along two body axes, one that goes from head to tail, and one that runs from back to belly. The limb grows perpendicular to these main body axes, along a new ‘proximal-distal’ axis that goes from nearest to furthest from the body. Wolff et al. found that the cells that contribute to the extremities of the limb divide faster than the ones that stay closer to the body. Finally, the results show that when cells in a limb divide, they mostly divide along the proximal-distal axis, producing one cell that is further from the body than the other. These cell activities may help limbs to get longer as they grow. Notably, the groups of cells seen by Wolff et al. were expressing genes that had previously been identified in developing limbs. This helps to validate the new results and to identify which active genes control the behaviors of the analyzed cells. These findings reveal new ways to study animal development. This approach could have many research uses and may help to link the mechanisms of cell biology to their effects. It could also contribute to new understanding of developmental and genetic conditions that affect human health.
Collapse
Affiliation(s)
- Carsten Wolff
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Tobias Pietzsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Evangelia Stamataki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Benjamin Harich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
4
|
Turetzek N, Khadjeh S, Schomburg C, Prpic NM. Rapid diversification of homothorax expression patterns after gene duplication in spiders. BMC Evol Biol 2017; 17:168. [PMID: 28709396 PMCID: PMC5513375 DOI: 10.1186/s12862-017-1013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Gene duplications provide genetic material for the evolution of new morphological and physiological features. One copy can preserve the original gene functions while the second copy may evolve new functions (neofunctionalisation). Gene duplications may thus provide new genes involved in evolutionary novelties. Results We have studied the duplicated homeobox gene homothorax (hth) in the spider species Parasteatoda tepidariorum and Pholcus phalangioides and have compared these data with previously published data from additional spider species. We show that the expression pattern of hth1 is highly conserved among spiders, consistent with the notion that this gene copy preserves the original hth functions. By contrast, hth2 has a markedly different expression profile especially in the prosomal appendages. The pattern in the pedipalps and legs consists of several segmental rings, suggesting a possible role of hth2 in limb joint development. Intriguingly, however, the hth2 pattern is much less conserved between the species than hth1 and shows a species specific pattern in each species investigated so far. Conclusions We hypothesise that the hth2 gene has gained a new patterning function after gene duplication, but has then undergone a second phase of diversification of its new role in the spider clade. The evolution of hth2 may thus provide an interesting example for a duplicated gene that has not only contributed to genetic diversity through neofunctionalisation, but beyond that has been able to escape evolutionary conservation after neofunctionalisation thus forming the basis for further genetic diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1013-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natascha Turetzek
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Current address: Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Zelluläre Neurobiologie, 37077, Göttingen, Germany
| | - Sara Khadjeh
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Present address: Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Christoph Schomburg
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany. .,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.
| |
Collapse
|
5
|
Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O'Connell LC, Patel NH. CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution. Curr Biol 2015; 26:14-26. [PMID: 26687626 DOI: 10.1016/j.cub.2015.11.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
Crustaceans possess a diverse array of specialized limbs. Although shifts in Hox gene expression domains have been postulated to play a role in generating this limb diversity, little functional data have been provided to understand the precise roles of Hox genes during crustacean development. We used a combination of CRISPR/Cas9-targeted mutagenesis and RNAi knockdown to decipher the function of the six Hox genes expressed in the developing mouth and trunk of the amphipod Parhyale hawaiensis. These experimentally manipulated animals display specific and striking homeotic transformations. We found that abdominal-A (abd-A) and Abdominal-B (Abd-B) are required for proper posterior patterning, with knockout of Abd-B resulting in an animal with thoracic type legs along what would have been an abdomen, and abd-A disruption generating a simplified body plan characterized by a loss of specialization in both abdominal and thoracic appendages. In the thorax, Ubx is necessary for gill development and for repression of gnathal fate, and Antp dictates claw morphology. In the mouth, Scr and Antp confer the part-gnathal, part-thoracic hybrid identity of the maxilliped, and Scr and Dfd prevent antennal identity in posterior head segments. Our results allow us to define the role Hox genes play in specifying each appendage type in Parhyale, including the modular nature by which some appendages are patterned by Hox gene inputs. In addition, we define how changes in Hox gene expression have generated morphological differences between crustacean species. Finally, we also highlight the utility of CRISPR/Cas9-based somatic mutagenesis in emerging model organisms.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Julia M Serano
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Erin Jarvis
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
| | - Heather S Bruce
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Jennifer Wang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
| | - Shagnik Ray
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Carryn A Barker
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Liam C O'Connell
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA
| | - Nipam H Patel
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200 USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140 USA.
| |
Collapse
|
6
|
Nast AR, Extavour CG. Ablation of a single cell from eight-cell embryos of the amphipod crustacean Parhyale hawaiensis. J Vis Exp 2014. [PMID: 24686416 DOI: 10.3791/51073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.
Collapse
Affiliation(s)
- Anastasia R Nast
- Department of Organismic and Evolutionary Biology, Harvard University
| | | |
Collapse
|
7
|
Barnett AA, Thomas RH. The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol Dev 2013; 15:280-92. [PMID: 23809702 DOI: 10.1111/ede.12038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The modular organization of arthropod limbs has lead to the evolution of a diversity of appendages within this phylum. A conserved trait within the arthropods is the utilization of a conserved set of regulatory genes that specify the appendage podomeres along the proximo-distal axis, termed the limb gap genes. These include extradenticle, homothorax, dachshund, and Distal-less. The deployment of these genes in the most basally branching arthropod group, the chelicerates, has only been studied in detail in two chelicerate groups, the harvestmen and spiders. Given the broad range of appendage diversity within the chelicerates, comparative studies of gap gene deployment in other chelicerates groups is needed. We therefore followed limb gap gene expression in a member of the largest chelicerate group, Acari, the oribatid mite Archegozetes longisetosus. We show that in contrast to many arthropod species, A. longisetosus expresses homothorax and extradenticle exclusively in the proximal portion of the appendages, which refutes the hypothesis of a sister-group relationship between chelicerates and myriapods. We also provide evidence that mites posses the ancestral chelicerate condition of possessing three-segmented chelicerae, which also express the gene dachshund. This adds support to the hypothesis that a cheliceral dachshund domain is ancestral to arachnids. Lastly, we provide evidence that the suppression of the fourth pair of walking legs, a putative synapomorphy for Acari, is accomplished by repressing the development of the medial and distal regions of the limb.
Collapse
Affiliation(s)
- Austen A Barnett
- Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | | |
Collapse
|
8
|
Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 2013; 223:341-50. [DOI: 10.1007/s00427-013-0449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
|
9
|
Blassberg RA, Felix DA, Tejada-Romero B, Aboobaker AA. PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. Development 2013; 140:730-9. [PMID: 23318635 DOI: 10.1242/dev.082982] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent advances in a number of systems suggest many genes involved in orchestrating regeneration are redeployed from similar processes in development, with others being novel to the regeneration process in particular lineages. Of particular importance will be understanding the architecture of regenerative genetic regulatory networks and whether they are conserved across broad phylogenetic distances. Here, we describe the role of the conserved TALE class protein PBX/Extradenticle in planarians, a representative member of the Lophotrocozoa. PBX/Extradenticle proteins play central roles in both embryonic and post-embryonic developmental patterning in both vertebrates and insects, and we demonstrate a broad requirement during planarian regeneration. We observe that Smed-pbx has pleiotropic functions during regeneration, with a primary role in patterning the anterior-posterior (AP) axis and AP polarity. Smed-pbx is required for expression of polarity determinants notum and wnt1 and for correct patterning of the structures polarized along the AP axis, such as the brain, pharynx and gut. Overall, our data suggest that Smed-pbx functions as a central integrator of positional information to drive patterning of regeneration along the body axis.
Collapse
Affiliation(s)
- Robert A Blassberg
- Department of Zoology, Tinbergen Building, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
10
|
Sharma PP, Schwager EE, Extavour CG, Giribet G. Evolution of the chelicera: adachshunddomain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 2012; 14:522-33. [DOI: 10.1111/ede.12005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street; Cambridge; MA 02138; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street; Cambridge; MA 02138; USA
| | | |
Collapse
|
11
|
Blythe MJ, Malla S, Everall R, Shih YH, Lemay V, Moreton J, Wilson R, Aboobaker AA. High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. PLoS One 2012; 7:e33784. [PMID: 22448274 PMCID: PMC3309017 DOI: 10.1371/journal.pone.0033784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community.
Collapse
Affiliation(s)
- Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Everall
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yu-huan Shih
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Lemay
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Joanna Moreton
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Raymond Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Ito A, Aoki MN, Yahata K, Wada H. Embryonic development and expression analysis of Distal-less in Caprella scaura (Crustacea, Amphipoda, Caprellidea). THE BIOLOGICAL BULLETIN 2011; 221:206-214. [PMID: 22042439 DOI: 10.1086/bblv221n2p206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Caprellidea generally possess rudimentary abdomens and degenerated third and fourth pereopods. Previous molecular phylogenetic studies support the concept that their unique body plan is derived from a gammarid-like body plan from which the abdomen or third and fourth pereopods have been lost in the Caprellidea. To understand the developmental and genetic mechanisms for the morphological evolution of the Caprellidea, we observed the embryonic development of Caprella scaura. Although in the early embryonic stage limb buds appeared in all of the pereonites, we found that elongation of the limb buds did not occur in the third and fourth pereonites; instead, only oval projections (possibly primordial gills) were observed. We next examined the gene expression of Distal-less (Dll) by in situ hybridization and found that Dll was not expressed in the third and fourth pereonites. This suggests that the suppression of Dll expression is responsible for the reduction of Caprellidea pereopods.
Collapse
Affiliation(s)
- Atsushi Ito
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | |
Collapse
|
13
|
Pechmann M, Khadjeh S, Sprenger F, Prpic NM. Patterning mechanisms and morphological diversity of spider appendages and their importance for spider evolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:453-467. [PMID: 20696272 DOI: 10.1016/j.asd.2010.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/07/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.
Collapse
Affiliation(s)
- Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | | | | | | |
Collapse
|
14
|
Appendage patterning in the South American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 2009; 219:189-98. [DOI: 10.1007/s00427-009-0279-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/19/2009] [Indexed: 01/08/2023]
|