1
|
Li C, Barton C, Henke K, Daane J, Treaster S, Caetano-Lopes J, Tanguay RL, Harris MP. celsr1a is essential for tissue homeostasis and onset of aging phenotypes in the zebrafish. eLife 2020; 9:50523. [PMID: 31985398 PMCID: PMC7010407 DOI: 10.7554/elife.50523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
The use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages. We find that the phenotypes are due to loss-of-function in the non-classical cadherin celsr1a. The premature aging is not associated with increased cellular senescence or telomere length but is a result of a failure to maintain progenitor cell populations. We show that celsr1a is essential for maintenance of stem cell progenitors in late stages. Caloric restriction can ameliorate celsr1a aging phenotypes. These data suggest that celsr1a function helps to mediate stem cell maintenance during maturation and homeostasis of tissues and thus regulates the onset or expressivity of aging phenotypes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Carrie Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Jake Daane
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Joana Caetano-Lopes
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| |
Collapse
|
2
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
3
|
Liu XZ, Fan J, Qi K, Liu SP, Xu WD, Gao Y, Gu XD, Li J, Bai CG, Shi YQ, Zhang LL, Zhao DB. Dishevelled2 promotes apoptosis and inhibits inflammatory cytokine secretion in rheumatoid arthritis fibroblast-like synoviocytes through crosstalk with the NF-κB pathway. Oncotarget 2017; 8:12649-12663. [PMID: 28187436 PMCID: PMC5355042 DOI: 10.18632/oncotarget.15172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Dishevelled (Dvl) not only links the canonical Wnt and non-canonical Wnt pathways but can also crosstalk with other pathways. As there is no systematic study to date on Dvl in rheumatoid arthritis (RA), we explored the impact of Dvl2 on proliferation and inflammatory cytokine secretion in RA fibroblast-like synoviocytes (FLSs). Expression of Dvl2 in RA synovial tissue and RA-FLSs was measured. Dvl2 was overexpressed in collagen-induced arthritis rats and human RA-FLSs,. the apoptosis and secretion of inflammatory cytokines were observed. Genetic changes and corresponding mechanisms caused by overexpressing Dvl2 in RA-FLSs were assessed. Dvl2 was found to be overexpressed in RA synovial tissue and RA-FLSs. Overexpression of Dvl2 increased apoptosis and inhibited inflammatory cytokine secretion by RA-FLSs in vivo and in vitro, and Dvl2 inhibited expression of anti-apoptotic and inflammatory genes. One possible mechanism is that Dvl2 decreases the nuclear translocation of P65 and inhibits its ability to bind to the promoters of NF-κB target genes. Our findings reveal an underappreciated role of Dvl2 in regulating inflammation and RA-FLS apoptosis and provide insight into crosstalk between the Wnt and nuclear factor-κB (NF-κB) pathways.
Collapse
Affiliation(s)
- Xing Zhen Liu
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Army Convalescence Area, Hangzhou Sanatorium of People's Liberation Army, Hangzhou, China
| | - Jie Fan
- Army Convalescence Area, Hangzhou Sanatorium of People's Liberation Army, Hangzhou, China
| | - Ke Qi
- Department of Joint Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shu Peng Liu
- Experimental Center, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Wei Dong Xu
- Department of Joint Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ying Gao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao Dan Gu
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jia Li
- Department of Joint Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chen Guang Bai
- Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ye Qing Shi
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lan Ling Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dong Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Żak M, Klis SFL, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47:247-58. [PMID: 26471908 DOI: 10.1016/j.ijdevneu.2015.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/21/2022] Open
Abstract
The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and Notch signalling pathways specify otic cells and refine the ventral boundary of the otic placode. Since both signalling pathways control events essential for the formation of sensory cells, such as proliferation and hair cell differentiation, these pathways could hold promise for the regeneration of hair cells in adult mammalian cochlea. Indeed, modulating either the Wnt or Notch pathways can trigger the regenerative potential of supporting cells. In the neonatal mouse cochlea, Notch-mediated regeneration of hair cells partially depends on Wnt signalling, which implies an interaction between the pathways. This review presents how the Wnt and Notch signalling pathways regulate the formation of sensory hair cells and how modulating their activity induces regenerative potential in the mammalian cochlea.
Collapse
Affiliation(s)
- Magdalena Żak
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Sjaak F L Klis
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology and Head & Neck Surgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Room G.02.531, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
5
|
Fischer S, Houston P, Monk NAM, Owen MR. Is a persistent global bias necessary for the establishment of planar cell polarity? PLoS One 2013; 8:e60064. [PMID: 23593163 PMCID: PMC3620226 DOI: 10.1371/journal.pone.0060064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/24/2013] [Indexed: 11/28/2022] Open
Abstract
Planar cell polarity (PCP)--the coordinated polarisation of a whole field of cells within the plane of a tissue-relies on the interaction of three modules: a global module that couples individual cellular polarity to the tissue axis, a local module that aligns the axis of polarisation of neighbouring cells, and a readout module that directs the correct outgrowth of PCP-regulated structures such as hairs and bristles. While much is known about the molecular components that are required for PCP, the functional details of--and interactions between--the modules remain unclear. In this work, we perform a mathematical and computational analysis of two previously proposed computational models of the local module (Amonlirdviman et al., Science, 307, 2005; Le Garrec et al., Dev. Dyn., 235, 2006). Both models can reproduce wild-type and mutant phenotypes of PCP observed in the Drosophila wing under the assumption that a tissue-wide polarity cue from the global module persists throughout the development of PCP. We demonstrate that both models can also generate tissue-level PCP when provided with only a transient initial polarity cue. However, in these models such transient cues are not sufficient to ensure robustness of the resulting cellular polarisation.
Collapse
Affiliation(s)
- Sabine Fischer
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|
6
|
Gao Q, Gilbert D, Heiner M, Liu F, Maccagnola D, Tree D. Multiscale modeling and analysis of planar cell polarity in the Drosophila wing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:337-351. [PMID: 22848136 DOI: 10.1109/tcbb.2012.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Modeling across multiple scales is a current challenge in Systems Biology, especially when applied to multicellular organisms. In this paper, we present an approach to model at different spatial scales, using the new concept of Hierarchically Colored Petri Nets (HCPN). We apply HCPN to model a tissue comprising multiple cells hexagonally packed in a honeycomb formation in order to describe the phenomenon of Planar Cell Polarity (PCP) signaling in Drosophila wing. We have constructed a family of related models, permitting different hypotheses to be explored regarding the mechanisms underlying PCP. In addition our models include the effect of well-studied genetic mutations. We have applied a set of analytical techniques including clustering and model checking over time series of primary and secondary data. Our models support the interpretation of biological observations reported in the literature.
Collapse
Affiliation(s)
- Qian Gao
- School of Information Systems, Computing, and Mathematics, Brunel University, DISC, St Johns Building, Uxbridge UB8 3PH, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Axelrod JD, Tomlin CJ. Modeling the control of planar cell polarity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:588-605. [PMID: 21755606 DOI: 10.1002/wsbm.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A growing list of medically important developmental defects and disease mechanisms can be traced to disruption of the planar cell polarity (PCP) pathway. The PCP system polarizes cells in epithelial sheets along an axis orthogonal to their apical-basal axis. Studies in the fruitfly, Drosophila, have suggested that components of the PCP signaling system function in distinct modules, and that these modules and the effector systems with which they interact function together to produce emergent patterns. Experimental methods allow the manipulation of individual PCP signaling molecules in specified groups of cells; these interventions not only perturb the polarization of the targeted cells at a subcellular level, but also perturb patterns of polarity at the multicellular level, often affecting nearby cells in characteristic ways. These kinds of experiments should, in principle, allow one to infer the architecture of the PCP signaling system, but the relationships between molecular interactions and tissue-level pattern are sufficiently complex that they defy intuitive understanding. Mathematical modeling has been an important tool to address these problems. This article explores the emergence of a local signaling hypothesis, and describes how a local intercellular signal, coupled with a directional cue, can give rise to global pattern. We will discuss the critical role mathematical modeling has played in guiding and interpreting experimental results, and speculate about future roles for mathematical modeling of PCP. Mathematical models at varying levels of inhibition have and are expected to continue contributing in distinct ways to understanding the regulation of PCP signaling.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | | |
Collapse
|
8
|
Graham TGW, Tabei SMA, Dinner AR, Rebay I. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives. Development 2010; 137:2265-78. [PMID: 20570936 PMCID: PMC2889600 DOI: 10.1242/dev.044826] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks.
Collapse
Affiliation(s)
- Thomas G. W. Graham
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - S. M. Ali Tabei
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Dishevelled: The hub of Wnt signaling. Cell Signal 2009; 22:717-27. [PMID: 20006983 DOI: 10.1016/j.cellsig.2009.11.021] [Citation(s) in RCA: 576] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 12/24/2022]
Abstract
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.
Collapse
|
10
|
Schamberg S, Houston P, Monk NAM, Owen MR. Modelling and analysis of planar cell polarity. Bull Math Biol 2009; 72:645-80. [PMID: 20107923 DOI: 10.1007/s11538-009-9464-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 09/30/2009] [Indexed: 01/30/2023]
Abstract
Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs, bristles, and feathers. Here, we present two approaches to modelling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbouring cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular diffusion. In this case, polarity can arise from weakly polarised initial conditions or via a wave provided the diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore, the range of the effects of groups of cells with different properties than the surrounding cells depends on the strength of the initial global cue and the intracellular diffusion.
Collapse
Affiliation(s)
- S Schamberg
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | |
Collapse
|
11
|
Abstract
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Room R226a, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|