1
|
Wang L, Jiang Y, Shi Q, Wang Y, Sha L, Fan X, Kang H, Zhang H, Sun G, Zhang L, Zhou Y. Genome constitution and evolution of Elytrigia lolioides inferred from Acc1, EF-G, ITS, TrnL-F sequences and GISH. BMC PLANT BIOLOGY 2019; 19:158. [PMID: 31023230 PMCID: PMC6485066 DOI: 10.1186/s12870-019-1779-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Elytrigia lolioides (Kar. et Kir.) Nevski, which is a perennial, cross-pollinating wheatgrass that is distributed in Russia and Kazakhstan, is classified into Elytrigia, Elymus, and Lophopyrum genera by taxonomists on the basis of different taxonomic classification systems. However, the genomic constitution of E. lolioides is still unknown. To identify the genome constitution and evolution of E. lolioides, we used single-copy nuclear genes acetyl-CoA carboxylase (Acc1) and elongation factor G (EF-G), multi-copy nuclear gene internal transcribed space (ITS), chloroplast gene trnL-F together with fluorescence and genomic in situ hybridization. RESULTS Despite the widespread homogenization of ITS sequences, two distinct lineages (genera Pseudoroegneria and Hordeum) were identified. Acc1 and EF-G sequences suggested that in addition to Pseudoroegneria and Hordeum, unknown genome was the third potential donor of E. lolioides. Data from chloroplast DNA showed that Pseudoroegneria is the maternal donor of E. lolioides. Data from specific FISH marker for St genome indicated that E. lolioides has two sets of St genomes. Both genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) results confirmed the presence of Hordeum genome in this species. When E genome was used as the probe, no signal was found in 42 chromosomes. The E-like copy of Acc1 sequences was detected in E. lolioides possibly due to the introgression from E genome species. One of the H chromosomes in the accession W6-26586 from Kazakhstan did not hybridize H genome signals but had St genome signals on the pericentromeric regions in the two-color GISH. CONCLUSIONS Phylogenetic and in situ hybridization indicated the presence of two sets of Pseudoroegneria and one set of Hordeum genome in E. lolioides. The genome formula of E. lolioides was designed as StStStStHH. E. lolioides may have originated through the hybridization between tetraploid Elymus (StH) and diploid Pseudoroegneria species. E and unknown genomes may participate in the speciation of E. lolioides through introgression. According to the genome classification system, E. lolioides should be transferred into Elymus L. and renamed as Elymus lolioidus (Kar. er Kir.) Meld.
Collapse
Affiliation(s)
- Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101 China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Nova Scotia Canada
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan China
| |
Collapse
|
2
|
Greiner R, Vogt R, Oberprieler C. Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. ANNALS OF BOTANY 2013; 111:1109-1123. [PMID: 23579573 PMCID: PMC3662516 DOI: 10.1093/aob/mct075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/19/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS The genus Leucanthemum is a species-rich polyploid complex from southern and central Europe, comprising 41 species with ploidy ranging from 2x to 22x. The present contribution aims at reconstructing the evolutionary history of a geographically isolated species group (the L. pluriflorum clan) from the north-west Iberian Peninsula comprising the diploid L. pluriflorum, the tetraploids L. ircutianum subsp. pseudosylvaticum and L. × corunnense (a putative hybrid taxon based on crossing between L. pluriflorum and L. merinoi), and the hexaploids L. sylvaticum and L. merinoi. METHODS Chromosome number variation (determined flow cytometrically) and sequence variation were analysed for two intergenic spacer regions on the plastid genome (psbA-trnH and trnC-petN) for individuals from 54 populations in combination with amplified fragment length polymorphism (AFLP) fingerprinting of 246 representative individuals from these populations. KEY RESULTS Plastid sequence data revealed that all surveyed members of the L. pluriflorum clan possess plastid haplotypes that are closely related to each other and distinctly separated from other Leucanthemum species. AFLP fingerprinting resulted in allopolyploid fragment patterns for most of the polyploid populations, except for the tetraploid L. × corunnense and a further tetraploid population in northern Galicia, which cluster with the diploids rather than with the other polyploids. In silico modelling of (auto)tetraploid AFLP genotypes further corroborates the allopolyploid nature of L. ircutianum subsp. pseudosylvaticum, L. sylvaticum and L. merinoi. CONCLUSIONS The present study provides evidence for recognizing one diploid (L. pluriflorum), one autotetraploid (L. corunnense), one allotetraploid (L. pseudosylvaticum) and one allohexaploid (L. sylvaticum with the two geographically and ecologically differentiated subspecies subsp. sylvaticum and subsp. merinoi) in the L. pluriflorum clan. It also has implications for the understanding of biogeographical patterns in the Iberian Peninsula.
Collapse
Affiliation(s)
- Roland Greiner
- Institute of Botany, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- Institut für Spezielle Botanik, Friedrich-Schiller-Universität Jena, Philosophenweg 16, D-07743 Jena, Germany
| | - Robert Vogt
- Botanic Garden & Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6–8, D-14191 Berlin, Germany
| | - Christoph Oberprieler
- Institute of Botany, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|