1
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025:S0945-053X(25)00037-X. [PMID: 40306374 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Du L, Cui Y, Chen W, Li C, He Z. Micro-proteomics reveals distinct protein profiles and SPARC/FGF2/CDH1 regulation of human Sertoli cells between Sertoli cell-only syndrome and normal men. Cell Mol Life Sci 2025; 82:146. [PMID: 40192810 PMCID: PMC11977051 DOI: 10.1007/s00018-025-05678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Sertoli cell-only syndrome (SCOS) is one of the most severe non-obstructive azoospermia (NOA) types, since only Sertoli cells with not any male germ cells exist with the seminiferous tubules. As such, it is of particular significance to elucidate molecular mechanisms underlying SCOS for improving the diagnosis and treatment strategies for this disease. Due to the difficulties in obtaining sufficient human testicular tissues and the limited availability of human cells, the traditional proteomics is inadequate for comparing the differences in large scale of protein expression patterns of human Sertoli cells between SCOS and normal men. To solve this issue on the requirement of large amount of cell numbers, we employed micro-proteomics to reveal distinct global protein expression profiles of human Sertoli cells between SCOS and obstructive azoospermia (OA) with normal spermatogenesis utilizing single human Sertoli cells. We found a significant downregulation of proteins involved in cell adhesion pathways in SCOS Sertoli cells, whereas proteins related to apoptosis were markedly upregulated. Interestingly, we identified the lower expression of SPARC (secreted protein acidic and rich in cysteine) and the higher expression of FGF2 (fibroblast growth factor 2) in human Sertoli cells of the SCOS compared to normal men. SPARC silencing led to upregulation of FGF2 in human Sertoli cells, and SPARC may be associated with the occurrence of SCOS and serves as a reliable marker for the diagnosis of this disease. This study thus comprehensively offers the proteomic landscape of human Sertoli cells in the testes of SCOS patients and it sheds a novel insight into the pathogenesis of SCOS.
Collapse
Affiliation(s)
- Li Du
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Yinghong Cui
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Wei Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Chunyun Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China.
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, 571199, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Kareddula A, Medina DJ, Petrosky W, Dolfi S, Tereshchenko I, Walton K, Aviv H, Sadimin E, Tabakin AL, Singer EA, Hirshfield KM. The role of chromodomain helicase DNA binding protein 1 (CHD1) in promoting an invasive prostate cancer phenotype. Ther Adv Urol 2021; 13:17562872211022462. [PMID: 34408788 PMCID: PMC8365013 DOI: 10.1177/17562872211022462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/15/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) phenotypes vary from indolent to aggressive. Molecular subtyping may be useful in predicting aggressive cancers and directing therapy. One such subtype involving deletions of chromodomain helicase DNA binding protein 1 (CHD1), a tumor suppressor gene, are found in 10-26% of PCa tumors. In this study, we evaluate the functional cellular effects that follow CHD1 deletion. METHODS CHD1 was knocked out (KO) in the non-tumorigenic, human papillomavirus 16 (HPV16)-immortalized prostate epithelial cell line, RWPE-1, using CRISPR/Cas9. In vitro assays such as T7 endonuclease assay, western blot, and sequencing were undertaken to characterize the CHD1 KO clones. Morphologic and functional assays for cell adhesion and viability were performed. To study expression of extracellular matrix (ECM) and adhesion molecules, a real-time (RT) profiler assay was performed using RWPE-1 parental, non-target cells (NT2) and CHD1 KO cells. RESULT Compared to parental RWPE-1 and non-target cells (NT2), the CHD1 KO cells had a smaller, rounder morphology and were less adherent under routine culture conditions. Compared to parental cells, CHD1 KO cells showed a reduction in ECM and adhesion molecules as well as a greater proportion of viable suspension cells when cultured on standard tissue culture plates and on plates coated with laminin, fibronectin or collagen I. CHD1 KO cells showed a decrease in the expression of secreted protein acidic and rich in cysteine (SPARC), matrix metalloproteinase 2 (MMP2), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 5 (ITGA5), integrin subunit alpha 6 (ITGA6), fibronectin (FN1), laminin subunit beta-3 precursor (LAMB3), collagen, tenascin and vitronectin as compared to parental and NT2 cells. CONCLUSION These data suggest that in erythroblast transformation specific (ETS) fusion-negative, phosphatase and tensin homolog (PTEN) wildtype PCa, deletion of CHD1 alters cell-cell and cell-matrix adhesion dynamics, suggesting an important role for CHD1 in the development and progression of PCa.
Collapse
Affiliation(s)
- Aparna Kareddula
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Daniel J. Medina
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Whitney Petrosky
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sonia Dolfi
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Irina Tereshchenko
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kelly Walton
- Department of Medicine/Division of Medical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hana Aviv
- Department of Pathology and Laboratory Medicine, Rutgers -Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Evita Sadimin
- Section of Urologic Pathology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alexandra L. Tabakin
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Eric A. Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | |
Collapse
|
4
|
Viet J, Reboutier D, Hardy S, Lachke SA, Paillard L, Gautier-Courteille C. Modeling ocular lens disease in Xenopus. Dev Dyn 2020; 249:610-621. [PMID: 31872467 PMCID: PMC7759097 DOI: 10.1002/dvdy.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ocular lens clouding is termed as cataract, which depending on the onset, is classified as congenital or age-related. Developing new cataract treatments requires new models. Thus far, Xenopus embryos have not been evaluated as a system for studying cataract. RESULTS We characterized the developmental process of lens formation in Xenopus laevis tailbuds and tadpoles, and we disrupted the orthologues of three mammalian cataract-linked genes in F0 by CRISPR/Cas9. We assessed the consequences of gene inactivation by combining external examination with histochemical analyses and functional vision assays. Inactivating the key metazoan eye development transcription factor gene pax6 produces a strong eye phenotype including an absence of eye tissue. Inactivating the genes for gap-junction protein and a nuclease, gja8 and dnase2b, produces lens defects that share several features of human cataracts, including impaired vision acuity, nuclei retention in lens fiber cells, and actin fibers disorganization. We tested the potential improvement of the visual acuity of gja8 crispant tadpoles upon treatment with the molecular chaperone 4-phenylbutyrate. CONCLUSION Xenopus is a valuable model organism to understand the molecular pathology of congenital eye defects, including cataracts, and to screen molecules with a potential to prevent or reverse cataracts.
Collapse
Affiliation(s)
- Justine Viet
- Univ Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France
| | | | - Serge Hardy
- Univ Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France
| | | |
Collapse
|
5
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
6
|
Chioran A, Duncan S, Catalano A, Brown TJ, Ringuette MJ. Collagen IV trafficking: The inside-out and beyond story. Dev Biol 2017; 431:124-133. [PMID: 28982537 DOI: 10.1016/j.ydbio.2017.09.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022]
Abstract
Collagen IV networks endow basement membranes (BMs) with remarkable tensile strength and function as morphoregulatory substrata for diverse tissue-specific developmental events. A complex repertoire of intracellular and extracellular molecular interactions are required for collagen IV secretion and supramolecular assembly into BMs. These include intracellular chaperones such as Heat shock protein 47 (Hsp47) and the chaperone-binding trafficking protein Transport and Golgi organization protein 1 (Tango1). Mutations in these proteins lead to compromised collagen IV protomer stability and secretion, leading to defective BM assembly and function. In addition to intracellular chaperones, a role for extracellular chaperones orchestrating the transport, supramolecular assembly, and architecture of collagen IV in BM is emerging. We present evidence derived from evolutionarily distant model organisms that supports an extracellular collagen IV chaperone-like activity for the matricellular protein SPARC (Secreted Protein, Acidic, Rich in Cysteine). Loss of SPARC disrupts BM homeostasis and compromises tissue biomechanics and physiological function. Thus, the combined contributions of intracellular and extracellular collagen IV-associated chaperones and chaperone-like proteins are critical to ensure proper secretion and stereotypic assembly of collagen IV networks in BMs.
Collapse
Affiliation(s)
- Alexa Chioran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | - Sebastian Duncan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | - Maurice J Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5.
| |
Collapse
|
7
|
Grigorian M, Hartenstein V. Hematopoiesis and hematopoietic organs in arthropods. Dev Genes Evol 2013; 223:103-15. [PMID: 23319182 PMCID: PMC3873168 DOI: 10.1007/s00427-012-0428-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/22/2012] [Indexed: 01/04/2023]
Abstract
Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species.
Collapse
Affiliation(s)
- Melina Grigorian
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
8
|
Cheng L, Sage EH, Yan Q. SPARC fusion protein induces cellular adhesive signaling. PLoS One 2013; 8:e53202. [PMID: 23349702 PMCID: PMC3549909 DOI: 10.1371/journal.pone.0053202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 11/28/2012] [Indexed: 11/23/2022] Open
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) has been described as a counteradhesive matricellular protein with a diversity of biological functions associated with morphogenesis, remodeling, cellular migration, and proliferation. We have produced mouse SPARC with a FLAG-tag at the N-terminus of SPARC (Flag-SPARC, FSP) in a Bac-to-Bac baculoviral expression system. After affinity purification, this procedure yields SPARC of high purity, with an electrophoretic mobility of ∼44 kDa under reducing conditions, and ∼38–39 kDa under non-reducing conditions. Unexpectedly, FSP adsorbed to plastic supported cell attachment and spreading, in a calcium-dependent manner. The adhesive activity of native FSP was inhibited by prior incubation with anti-SPARC IgG. Cell adhesion to FSP induced the formation of filopodia and lamellipodia but not focal adhesions that were prominent on cells that were attached to fibronectin. In addition, FSP induced the tyrosine phosphorylation of FAK and paxillin in attached epithelial cells. Erk1/2 and Rac were also activated in cells attached to FSP, but at a lower level in comparison to cells on fibronectin. This study provides new insight into the biological functions of SPARC, a matricellular protein with important roles in cell-extracellualr matrix interactions.
Collapse
Affiliation(s)
- Lamei Cheng
- Benaroya Research Institute, Seattle, Washington, United States of America
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - E. Helene Sage
- Benaroya Research Institute, Seattle, Washington, United States of America
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Qi Yan
- Benaroya Research Institute, Seattle, Washington, United States of America
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
9
|
Baratta CA, Brown TJ, Al-Dhalaan F, Ringuette MJ. Evolution and Function of SPARC and Tenascins: Matricellular Counter-Adhesive Glycoproteins with Pleiotropic Effects on Angiogenesis and Tissue Fibrosis. EVOLUTION OF EXTRACELLULAR MATRIX 2013. [DOI: 10.1007/978-3-642-36002-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|