1
|
Phuangphong S, Yoshikawa H, Kojima Y, Wada H, Morino Y. Characterization of shell field populations in gastropods and their autonomous specification mechanism independent of inter-quartet interactions. Development 2025; 152:dev204538. [PMID: 40105679 DOI: 10.1242/dev.204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The embryonic shell field of mollusks appears during gastrulation on the dorsal ectoderm and later develops into the adult shell-secreting mantle. Although several lines of evidence have revealed that the shell field is exclusively derived from the second quartet (2q) of 16-cell embryos, it is generally believed that its fate is established only after receiving inductive signals from cells derived from other quartets, such as the invaginated endoderm. However, the induction hypothesis remains questionable due to limited experimental evidence and contradictory results. Here, we re-investigated the induction hypothesis for shell field specification in the limpet. We identified three cell populations within the developing shell field using two-color in situ hybridization and single-cell transcriptome analysis, each characterized by distinct effector and transcription factor genes. The specification of each population was examined in 2q blastomeres isolated from 16-cell embryos. Even without inter-quartet interactions, marker gene expression for each shell field population was detected in the 2q-derived partial embryos. We conclude that the early specification of shell field in 2q-derived cells occurs largely independently of interactions with other quartets.
Collapse
Affiliation(s)
- Supanat Phuangphong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroki Yoshikawa
- Graduate School of Science and Life Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yune Kojima
- Graduate School of Science and Life Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Wada
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Morino
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Dao TK, Ferger K, Lambert JD. A chitin-binding domain-containing gene is essential for shell development in the mollusc Tritia. Dev Biol 2025; 520:1-12. [PMID: 39725261 DOI: 10.1016/j.ydbio.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Mollusc shells are diverse in shape and size. They are created by a shell epithelium which secretes a chitinous periostracum membrane at the growing edge of the shell, and then coordinates biomineral deposition on the underside of this membrane. Although mollusc shells are important for studying the evolution of morphology, the molecular basis of the shell development is poorly understood. In this paper, we investigate genes involved in the shell development of the gastropod mollusc Tritia (previously known as Ilyanassa). We characterize the contributions of the 2d micromere to the shell and other non-shell structures. We identify eight shell-specific genes and five non-shell specific genes by comparing the transcriptomes of wild-type and 2d ablated embryos. Morpholino knockdown of one of the shell-specific genes, ToChitin-binding domain-containing (ToChitin BD), results in shell defects. The chitinous periostracal membranes in ToChitin BD morpholino knockdown embryos lose their well-defined edge and peroxidase gradient.
Collapse
Affiliation(s)
- T Kim Dao
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA
| | - Kailey Ferger
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA
| | - J David Lambert
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA.
| |
Collapse
|
3
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Morino Y, Yoshikawa H. Role of maternal spiralian-specific homeobox gene SPILE-E in the specification of blastomeres along the animal-vegetal axis during the early cleavage stages of mollusks. Dev Growth Differ 2023; 65:384-394. [PMID: 37392142 DOI: 10.1111/dgd.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Spiralians, one of the major clades of bilaterians, share a unique development known as spiralian development, characterized by the formation of tiers of cells called quartets, which exhibit different developmental potentials along the animal-vegetal axis. Recently, spiralian-specific TALE-type homeobox genes (SPILE) have been identified, some of which show zygotic and staggered expression patterns along the animal-vegetal axis and function in quartet specification in mollusks. However, it is unclear which maternal molecular components control the zygotic expression of these transcription factors. In this study, we focused on SPILE-E, a maternal transcription factor, and investigated its expression and function in mollusks. We found that the maternal and ubiquitous expression of SPILE-E in the cleavage stages is conserved in molluskan species, including limpets, mussels, and chitons. We knocked down SPILE-E in limpets and revealed that the expression of transcription factors specifically expressed in the first quartet (1q2 ; foxj1b) and second quartet (2q; SPILE-B) was abolished, whereas the macromere-quartet marker (SPILE-C) was ectopically expressed in 1q2 in SPILE-E morphants. Moreover, we showed that the expression of SPILE-A, which upregulates SPILE-B but represses SPILE-C expression, decreased in SPILE-E morphants. Consistent with changes in the expression pattern of the above transcription factors, SPILE-E-morphant larvae exhibited patchy or complete loss of expression of marker genes of ciliated cells and shell fields, possibly reflecting incomplete specification of 1q2 and 2q. Our results provide a molecular framework for quartet specification and highlight the importance of maternal lineage-specific transcription factors in the development and evolution of spiralians.
Collapse
Affiliation(s)
- Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroki Yoshikawa
- Graduate School of Science and Life Technology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Sun D, Huan P, Liu B. Early mesodermal development in the patellogastropod Lottia goshimai. Evol Appl 2023; 16:250-261. [PMID: 36793691 PMCID: PMC9923484 DOI: 10.1111/eva.13373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022] Open
Abstract
Mesodermal development is essential to explore the interlineage variations in the development of spiralians. Compared with model mollusks such as Tritia and Crepidula, knowledge about the mesodermal development of other molluscan lineages is limited. Here, we investigated early mesodermal development in the patellogastropod Lottia goshimai, which shows equal cleavage and has a trochophore larva. The endomesoderm derived from the 4d blastomere, that is, the mesodermal bandlets, was situated dorsally and showed a characteristic morphology. Investigations of the potential mesodermal patterning genes revealed that twist1 and snail1 were expressed in a proportion of these endomesodermal tissues, while all of the five genes we investigated (twist1, twist2, snail1, snail2, and mox) were expressed in ventrally located ectomesodermal tissues. Relatively dynamic snail2 expression suggests additional roles in various internalization processes. By tracing snail2 expression in early gastrulae, the 3a211 and 3b211 blastomeres were suggested to be the precursors of the ectomesoderm, which elongated to become internalized before division. These results help to understand the variations in the mesodermal development of different spiralians and explore the different mechanisms by which ectomesodermal cells are internalized, which has important evolutionary implications.
Collapse
Affiliation(s)
- Dehui Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
6
|
Morino Y. Dynamic evolutionary history of spiralian-specific TALE homeobox genes in mollusks. Dev Growth Differ 2022; 64:198-209. [PMID: 35441397 DOI: 10.1111/dgd.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Homeobox genes play essential roles in the early development of many animals. Although the repertoire of most homeobox genes, including three amino acid loop extension (TALE)-type homeobox genes, is conserved in animals, spiralian-TALE (SPILE) genes are a notable exception. In this study, SPILE genes were extracted from the genomic data of 22 mollusk species and classified into four clades (-A/C, -B, -D, and -E) to determine which SPILE genes exhibit dynamic repertoire changes. While SPILE-D and -E duplications were rarely observed, SPILE-B duplication was observed in the bivalve lineage and SPILE-A/C duplication was observed in multiple clades. Conversely, most or all SPILE genes were lost in cephalopods and in some gastropod lineages. SPILE gene expression patterns were also analyzed in multiple mollusk species using publicly available RNA-seq data. The majority of SPILE genes examined, particularly those in the A/C- and B-clades, were specifically expressed during early development, suggesting that most SPILE genes exert specific roles in early development. This comprehensive cataloging and characterization revealed a dynamic evolutionary history, including SPILE-A/C and -B gene duplications and the loss of SPILE genes in several lineages. Furthermore, this study provides a useful resource for studying the molecular mechanism of spiralian early development and the evolution of young and lineage-specific transcription factors.
Collapse
Affiliation(s)
- Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Slipper snail tales: How Crepidula fornicata and Crepidula atrasolea became model molluscs. Curr Top Dev Biol 2022; 147:375-399. [PMID: 35337456 DOI: 10.1016/bs.ctdb.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.
Collapse
|
8
|
Phuangphong S, Tsunoda J, Wada H, Morino Y. Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage. EvoDevo 2021; 12:11. [PMID: 34663437 PMCID: PMC8524836 DOI: 10.1186/s13227-021-00181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates. Results We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts. Conclusions These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00181-2.
Collapse
Affiliation(s)
- Supanat Phuangphong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Jumpei Tsunoda
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
9
|
Wu L, Lambert JD. A serpin is required for ectomesoderm, a hallmark of spiralian development. Dev Biol 2021; 469:172-181. [PMID: 33148394 DOI: 10.1016/j.ydbio.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Among animals, diploblasts contain two germ layers, endoderm and ectoderm, while triploblasts have a distinct third germ layer called the mesoderm. Spiralians are a group of triploblast animals that have highly conserved development: they share the distinctive spiralian cleavage pattern as well as a unique source of mesoderm, the ectomesoderm. This population of mesoderm is distinct from endomesoderm and is considered a hallmark of spiralian development, but the regulatory network that drives its development is unknown. Here we identified ectomesoderm-specific genes in the mollusc Tritia (aka Ilyanassa) obsoleta through differential gene expression analyses comparing control and ectomesoderm-ablated embryos, followed by in situ hybridization of identified transcripts. We identified a Tritia serpin gene (ToSerpin1) that appears to be specifically expressed in the ectomesoderm of the posterior and head. Ablation of the 3a and 3b cells, which make most of the ectomesoderm, abolishes ToSerpin1 expression, consistent with its expression in these cells. Morpholino knockdown of ToSerpin1 causes ectomesoderm defects, most prominently in the muscle system of the larval head. This is the first gene identified that is specifically implicated in spiralian ectomesoderm development.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
10
|
Johnson AB, Lambert JD. The Caudal ParaHox gene is required for hindgut development in the mollusc Tritia (a.k.a. Ilyanassa). Dev Biol 2020; 470:1-9. [PMID: 33191200 DOI: 10.1016/j.ydbio.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
Caudal homeobox genes are found across animals, typically linked to two other homeobox genes in what has been called the ParaHox cluster. These genes have been proposed to pattern the anterior-posterior axis of the endoderm ancestrally, but the expression of Caudal in extant groups is varied and often occurs in other germ layers. Here we examine the role of Caudal in the embryo of the mollusc Tritia (Ilyanassa) obsoleta. ToCaudal expression is initially broad, then becomes progressively restricted and is finally only in the developing hindgut (a.k.a. intestine). Knockdown of ToCaudal using morpholino oligonucleotides specifically blocks hindgut development, indicating that despite its initially broad expression, the functional role of ToCaudal is in hindgut patterning. This is the first functional characterization of Caudal in an animal with spiralian development, which is an ancient mode of embryogenesis that arose early in bilaterian animal evolution. These results are consistent with the hypothesis that the ancestral role of the ParaHox genes was anterior-posterior patterning of the endoderm.
Collapse
Affiliation(s)
- Adam B Johnson
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
11
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
12
|
Vopalensky P, Tosches MA, Achim K, Handberg-Thorsager M, Arendt D. From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. BMC Biol 2019; 17:81. [PMID: 31640768 PMCID: PMC6805352 DOI: 10.1186/s12915-019-0705-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND During early development, patterns of cell division-embryonic cleavage-accompany the gradual restriction of blastomeres to specific cell fates. In Spiralia, which include annelids, mollusks, and flatworms, "spiral cleavage" produces a highly stereotypic, spiral-like arrangement of blastomeres and swimming trochophore-type larvae with rotational (spiral) symmetry. However, starting at larval stages, spiralian larvae acquire elements of bilateral symmetry, before they metamorphose into fully bilateral juveniles. How this spiral-to-bilateral transition occurs is not known and is especially puzzling for the early differentiating brain and head sensory organs, which emerge directly from the spiral cleavage pattern. Here we present the developmental cell lineage of the Platynereis larval episphere. RESULTS Live-imaging recordings from the zygote to the mid-trochophore stage (~ 30 hpf) of the larval episphere of the marine annelid Platynereis dumerilii reveal highly stereotypical development and an invariant cell lineage of early differentiating cell types. The larval brain and head sensory organs develop from 11 pairs of bilateral founders, each giving rise to identical clones on the right and left body sides. Relating the origin of each bilateral founder pair back to the spiral cleavage pattern, we uncover highly divergent origins: while some founder pairs originate from corresponding cells in the spiralian lineage on each body side, others originate from non-corresponding cells, and yet others derive from a single cell within one quadrant. Integrating lineage and gene expression data for several embryonic and larval stages, we find that the conserved head patterning genes otx and six3 are expressed in bilateral founders representing divergent lineage histories and giving rise to early differentiating cholinergic neurons and head sensory organs, respectively. CONCLUSIONS We present the complete developmental cell lineage of the Platynereis larval episphere, and thus the first comprehensive account of the spiral-to-bilateral transition in a developing spiralian. The bilateral symmetry of the head emerges from pairs of bilateral founders, similar to the trunk; however, the head founders are more numerous and show striking left-right asymmetries in lineage behavior that we relate to differential gene expression.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Maria Antonietta Tosches
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Mette Handberg-Thorsager
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, 01307, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
13
|
Wu L, Ferger KE, Lambert JD. Gene Expression Does Not Support the Developmental Hourglass Model in Three Animals with Spiralian Development. Mol Biol Evol 2019; 36:1373-1383. [DOI: 10.1093/molbev/msz065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
It has been proposed that animals have a pattern of developmental evolution resembling an hourglass because the most conserved development stage—often called the phylotypic stage—is always in midembryonic development. Although the topic has been debated for decades, recent studies using molecular data such as RNA-seq gene expression data sets have largely supported the existence of periods of relative evolutionary conservation in middevelopment, consistent with the phylotypic stage and the hourglass concepts. However, so far this approach has only been applied to a limited number of taxa across the tree of life. Here, using established phylotranscriptomic approaches, we found a surprising reverse hourglass pattern in two molluscs and a polychaete annelid, representatives of the Spiralia, an understudied group that contains a large fraction of metazoan body plan diversity. These results suggest that spiralians have a divergent midembryonic stage, with more conserved early and late development, which is the inverse of the pattern seen in almost all other organisms where these phylotranscriptomic approaches have been reported. We discuss our findings in light of proposed reasons for the phylotypic stage and hourglass model in other systems.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY
| | - Kailey E Ferger
- Department of Biology, University of Rochester, Rochester, NY
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
14
|
Osborne CC, Perry KJ, Shankland M, Henry JQ. Ectomesoderm and epithelial-mesenchymal transition-related genes in spiralian development. Dev Dyn 2018; 247:1097-1120. [PMID: 30133032 DOI: 10.1002/dvdy.24667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spiralians (e.g., annelids, molluscs, and flatworms) possess two sources of mesoderm. One is from endodermal precursors (endomesoderm), which is considered to be the ancestral source in metazoans. The second is from ectoderm (ectomesoderm) and may represent a novel cell type in the Spiralia. In the mollusc Crepidula fornicata, ectomesoderm is derived from micromere daughters within the A and B cell quadrants. Their progeny lie along the anterolateral edges of the blastopore. There they undergo epithelial-mesenchymal transition (EMT), become rounded and undergo delamination/ingression. Subsequently, they assume the mesenchymal phenotype, and migrate beneath the surface ectoderm to differentiate various cell types, including muscles and pigment cells. RESULTS We examined expression of several genes whose homologs are known to regulate Type 1 EMT in other metazoans. Most of these genes were expressed within spiralian ectomesoderm during EMT. CONCLUSIONS We propose that spiralian ectomesoderm, which exhibits analogous cellular behaviors to other populations of mesenchymal cells, may be controlled by the same genes that drive EMT in other metazoans. Perhaps these genes comprise a conserved metazoan EMT gene regulatory network (GRN). This study represents the first step in elucidating the GRN controlling the development of a novel spiralian cell type (ectomesoderm). Developmental Dynamics 247:1097-1120, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C Cornelia Osborne
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Marty Shankland
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
15
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
16
|
Nielsen C. Origin of the trochophora larva. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180042. [PMID: 30109065 PMCID: PMC6083724 DOI: 10.1098/rsos.180042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
The trochophora larva, which is so well known from the marine plankton, is central to our understanding of the evolution of a large branch of the bilaterians. Two theories for this larval type have been prevalent, the trochaea theory and the theory proposed by Ivanova-Kazas. The embryology, or more precisely the cell-lineage, of these larvae seems to be central for our understanding of their origin, but important details have been missing. According to the trochaea theory, a circumblastoporal ring of blastomeres differentiates to follow the convoluted shape of the conspicuous ciliary bands of the larvae, with prototroch and metatroch around the mouth, forming a filtering system, and telotroch around the anus. According to the Ivanova-Kazas theory, the blastomeres with the ciliary bands develop through specialization of rings of cells of the general ciliation in a lecithotrophic larva. Now, a new cell-lineage study of the gastropod Crepidula has shown that the ring of cells at the edge of the blastopore develops into the band of cells carrying prototroch and metatroch, characteristic of the trochophora. This gives strong support to the trochaea theory.
Collapse
|
17
|
von Dassow G, Maslakova SA. The trochoblasts in the pilidium larva break an ancient spiralian constraint to enable continuous larval growth and maximally indirect development. EvoDevo 2017; 8:19. [PMID: 29090082 PMCID: PMC5655816 DOI: 10.1186/s13227-017-0079-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Nemertean embryos undergo equal spiral cleavage, and prior fate-mapping studies showed that some also exhibit key aspects of spiralian lineage-based fate specification, including specification of the primary trochoblasts, which differentiate early as the core of the prototroch of the spiralian trochophore larva. Yet it remains unclear how the nemertean pilidium larva, a long-lived planktotroph that grows substantially as it builds a juvenile body from isolated rudiments, develops within the constraints of spiral cleavage. RESULTS We marked single cells in embryos of the pilidiophoran Maculaura alaskensis to show that primary, secondary, and accessory trochoblasts, cells that would make the prototroch in conventional spiralian trochophores (1q2, 1q12, and some descendants of 2q), fully account for the pilidium's primary ciliary band, but without undergoing early cleavage arrest. Instead, the primary ciliary band consists of many small, albeit terminally differentiated, cells. The trochoblasts also give rise to niches of indefinitely proliferative cells ("axils") that sustain continuous growth of the larval body, including new ciliated band. Several of the imaginal rudiments that form the juvenile body arise from the axils: in particular, we show that cephalic imaginal disks originate from 1a2 and 1b12 and that trunk imaginal disks likely originate from 2d. CONCLUSIONS The pilidium exhibits a familiar relation between identified blastomeres and the primary ciliated band, but the manner in which these cells form this organ differs fundamentally from the way equivalent cells construct the trochophore's prototroch. Also, the establishment, by some progeny of the putative trochoblasts, of indeterminate stem cell populations that give rise to juvenile rudiments, as opposed to an early cleavage arrest, implies a radical alteration in their developmental program. This transition may have been essential to the evolution of a maximally indirect developing larval form-the pilidium-among nemerteans.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, OR 97420 USA
| | - Svetlana A. Maslakova
- Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, OR 97420 USA
| |
Collapse
|
18
|
Lyons DC, Perry KJ, Henry JQ. Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata. BMC Evol Biol 2017; 17:217. [PMID: 28915788 PMCID: PMC5603038 DOI: 10.1186/s12862-017-1057-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Background The Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo. Results This study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole. Conclusions This is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, USA.
| | - Kimberly J Perry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Jonathan Q Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Kuo DH. The polychaete-to-clitellate transition: An EvoDevo perspective. Dev Biol 2017; 427:230-240. [DOI: 10.1016/j.ydbio.2017.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
|
20
|
Henry JQ, Lyons DC. Molluscan models: Crepidula fornicata. Curr Opin Genet Dev 2016; 39:138-148. [PMID: 27526387 DOI: 10.1016/j.gde.2016.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Gastropod snails in the genus Crepidula have emerged as model systems for studying a metazoan super clade, the Spiralia. Recent work on one species in particular, Crepidula fornicata, has produced high-resolution cell lineage fate maps, details of morphogenetic events during gastrulation, key insights into the molecular underpinnings of early development, and the first demonstration of CRISPR/Cas9 genome editing in the Spiralia. Furthermore, invasive species of Crepidula are a significant ecological threat, while one of these, C. fornicata, is also being harvested for food. This review highlights progress towards developing these animals as models for evolutionary, developmental, and ecological studies. Such studies have contributed greatly to our understanding of biology in a major clade of bilaterians. This information may also help us to control and cultivate these snails.
Collapse
Affiliation(s)
- Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 South Goodwin Avenue, Urbana, IL 61801, United States.
| | - Deirdre C Lyons
- University of California, San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
21
|
Goulding MQ, Lambert JD. Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 2016; 39:168-174. [PMID: 27497839 DOI: 10.1016/j.gde.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
Ilyanassa obsoleta has been a model system for experimental embryology for over a century. Here we highlight new insight into early cell lineage specification in Ilyanassa. As in all molluscs and other spiralians, stereotyped cleavage patterns establish a homunculus of regional founder cells. Ongoing studies are beginning to dissect mechanisms of asymmetric cell division that specify these cells' fates. This is only part of the story: overlaid on intrinsic cell identities is a graded 'organizer' signal, and emerging evidence suggests wider roles for short-range intercellular signaling. Modern methods, combined with the intrinsic experimental advantages of Ilyanassa, offer attractive opportunities for studying basic developmental cell biology as well as its evolution over a wide range of phylogenetic scales.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Division of Natural Science, Bethel University, McKenzie, TN 38201, United States.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
22
|
Dpp/BMP2-4 Mediates Signaling from the D-Quadrant Organizer in a Spiralian Embryo. Curr Biol 2016; 26:2003-2010. [DOI: 10.1016/j.cub.2016.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
23
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
24
|
Mohri M, Hashimoto N, Wada H. Lineage tracing of the bivalve shell field with special interest in the descendants of the 2d blastomere. Biol Lett 2016; 12:20151055. [PMID: 26932681 DOI: 10.1098/rsbl.2015.1055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By evolving bilaterally separated shell plates, bivalves acquired a unique body plan in which their soft tissues are completely protected by hard shell plates. In this unique body plan, mobility between the separated shell plates is provided by novel structures such as a ligament and adductor muscles. As a first step towards understanding how the bivalve body plan was established, we investigated the development of the separated shell plates and ligament. Over 100 years ago, it was hypothesized that the development of separated shell plates is tightly linked with the unique cell cleavage (division) pattern of bivalves during development, wherein each bilateral daughter cell of the 2d descendant 2d(1121) develops into one of the bilateral shell fields. In this study, we tested this hypothesis by tracing the cell lineages of the Japanese purple mussel Septifer virgatus. Although the shell fields were found to be exclusively derived from the bilateral descendant cells of 2d: 2d(11211) and 2d(11212), the descendants of these cells were not restricted to shell fields alone, nor were they confined to the left or right side of the shell field based on their lineage. Our study demonstrated that ligament cells are also derived from 2d(11211) and 2d(11212), indicating that the ligament cells emerged as a subpopulation of shell field cells. This also suggests that the establishment of the novel developmental system for the ligament cells was critical for the evolution of the unique body plan of bivalves.
Collapse
Affiliation(s)
- Masakuni Mohri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Naoki Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
25
|
Lyons DC, Perry KJ, Henry JQ. Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. EvoDevo 2015; 6:24. [PMID: 26664718 PMCID: PMC4673862 DOI: 10.1186/s13227-015-0019-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/15/2015] [Indexed: 12/14/2022] Open
Abstract
Background Gastrulation is a critical step in bilaterian development, directly linked to the segregation of germ layers, establishment of axes, and emergence of the through-gut. Theories about the evolution of gastrulation often concern the fate of the blastopore (site of endomesoderm internalization), which varies widely in a major branch of bilaterians, the Spiralia. In this group, the blastopore has been said to become the mouth, the anus, both, or neither. Different developmental explanations for this variation exist, yet no modern lineage tracing study has ever correlated the position of cells surrounding the blastopore with their contribution to tissues of the mouth, foregut, and anus in a spiralian. This is the first study to do so, using the gastropod Crepidula fornicata. Results Crepidula gastrulation occurs by epiboly: the first through third quartet micromeres form an epithelial animal cap that expands to cover vegetal endomesodermal precursors. Initially, descendants of the second and third quartet micromeres (2a–2d, 3a–3d) occupy a portion of the blastopore lip. As the blastopore narrows, the micromeres’ progeny exhibit lineage-specific behaviors that result in certain sublineages leaving the lip’s edge. Anteriorly, cells derived from 3a2 and 3b2 undergo a unique epithelial-to-mesenchymal transition involving proliferation and a collective movement of cells into the archenteron. These cells make a novel spiralian germ layer, the ectomesoderm. Posteriorly, cells derived from 3c2 and 3d2 undergo a form of convergence and extension that involves zippering of cells and their intercalation across the ventral midline. During this process, several of these cells, as well as the 2d clone, become displaced posteriorly, away from the blastopore. Progeny of 2a-2c and 3a-3d make the mouth and foregut, and the blastopore becomes the opening to the mouth. The anus forms days later, as a secondary opening within the 2d2 clone, and not from the classically described “anal cells”, which we identify as the 3c221 and 3d221 cells. Conclusions Our analysis of Crepidula gastrulation constitutes the first description of blastopore lip morphogenesis and fates using lineage tracing and live imaging. These data have profound implications for hypotheses about the evolution of the bilaterian gut and help explain observed variation in blastopore morphogenesis among spiralians. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0019-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Biology Department, Duke University, 124 Science Drive, Durham, NC 27708 USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801 USA
| |
Collapse
|
26
|
Kumano G. Evolution of germline segregation processes in animal development. Dev Growth Differ 2015; 57:324-32. [DOI: 10.1111/dgd.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| |
Collapse
|