1
|
Osuma EA, Riggs DW, Gibb AA, Hill BG. High throughput measurement of metabolism in planarians reveals activation of glycolysis during regeneration. ACTA ACUST UNITED AC 2018; 5:78-86. [PMID: 29721328 PMCID: PMC5911454 DOI: 10.1002/reg2.95] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Planarians are outstanding models for studying mechanisms of regeneration; however, there are few methods to measure changes in their metabolism. Examining metabolism in planarians is important because the regenerative process is dependent on numerous integrated metabolic pathways, which provide the energy required for tissue repair as well as the ability to synthesize the cellular building blocks needed to form new tissue. Therefore, we standardized an extracellular flux analysis method to measure mitochondrial and glycolytic activity in live planarians during normal growth as well as during regeneration. Small, uninjured planarians showed higher rates of oxygen consumption compared with large planarians, with no difference in glycolytic activity; however, glycolysis increased during planarian regeneration. Exposure of planarians to koningic acid, a specific inhibitor of glyceraldehyde‐3‐phosphate dehydrogenase, completely abolished extracellular acidification with little effect on oxygen consumption, which suggests that the majority of glucose catabolized in planarians is fated for aerobic glycolysis. These studies describe a useful method for measuring respiration and glycolysis in planarians and provide data implicating changes in glucose metabolism in the regenerative response.
Collapse
Affiliation(s)
- Edie A Osuma
- Wesleyan College Macon GA USA.,Department of Physiology University of Louisville Louisville KY USA
| | - Daniel W Riggs
- Diabetes and Obesity Center, Department of Medicine University of Louisville Louisville KY USA
| | - Andrew A Gibb
- Diabetes and Obesity Center, Department of Medicine University of Louisville Louisville KY USA.,Department of Physiology University of Louisville Louisville KY USA
| | - Bradford G Hill
- Institute of Molecular Cardiology, Diabetes and Obesity Center, Department of Medicine University of Louisville Louisville KY USA.,Diabetes and Obesity Center, Department of Medicine University of Louisville Louisville KY USA.,Department of Physiology University of Louisville Louisville KY USA
| |
Collapse
|
2
|
Pietak A, Levin M. Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J R Soc Interface 2017; 14:20170425. [PMID: 28954851 PMCID: PMC5636277 DOI: 10.1098/rsif.2017.0425] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Gene regulatory networks (GRNs) describe interactions between gene products and transcription factors that control gene expression. In combination with reaction-diffusion models, GRNs have enhanced comprehension of biological pattern formation. However, although it is well known that biological systems exploit an interplay of genetic and physical mechanisms, instructive factors such as transmembrane potential (Vmem) have not been integrated into full GRN models. Here we extend regulatory networks to include bioelectric signalling, developing a novel synthesis: the bioelectricity-integrated gene and reaction (BIGR) network. Using in silico simulations, we highlight the capacity for Vmem to alter steady-state concentrations of key signalling molecules inside and out of cells. We characterize fundamental feedbacks where Vmem both controls, and is in turn regulated by, biochemical signals and thereby demonstrate Vmem homeostatic control, Vmem memory and Vmem controlled state switching. BIGR networks demonstrating hysteresis are identified as a mechanisms through which more complex patterns of stable Vmem spots and stripes, along with correlated concentration patterns, can spontaneously emerge. As further proof of principle, we present and analyse a BIGR network model that mechanistically explains key aspects of the remarkable regenerative powers of creatures such as planarian flatworms. The functional properties of BIGR networks generate the first testable, quantitative hypotheses for biophysical mechanisms underlying the stability and adaptive regulation of anatomical bioelectric pattern.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
3
|
Ong TH, Romanova EV, Roberts-Galbraith RH, Yang N, Zimmerman TA, Collins JJ, Lee JE, Kelleher NL, Newmark PA, Sweedler JV. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. J Biol Chem 2016; 291:8109-20. [PMID: 26884331 PMCID: PMC4825013 DOI: 10.1074/jbc.m115.709196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enablede novostudies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatwormSchmidtea mediterraneaat different time points during cephalic ganglia regeneration. A protocol was developed to makeS. mediterraneatissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- From the Department of Chemistry, and the Beckman Institute
| | | | - Rachel H Roberts-Galbraith
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ning Yang
- From the Department of Chemistry, and the Beckman Institute
| | | | - James J Collins
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ji Eun Lee
- From the Department of Chemistry, and the Beckman Institute
| | - Neil L Kelleher
- the Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60611
| | - Phillip A Newmark
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | |
Collapse
|
4
|
Geng X, Wang G, Qin Y, Zang X, Li P, Geng Z, Xue D, Dong Z, Ma K, Chen G, Xu C. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians. PLoS One 2015; 10:e0132045. [PMID: 26131905 PMCID: PMC4488856 DOI: 10.1371/journal.pone.0132045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR) remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.
Collapse
Affiliation(s)
- Xiaofang Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
| | - Gaiping Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Yanli Qin
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Xiayan Zang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Pengfei Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Zhi Geng
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Deming Xue
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Kexue Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
- * E-mail: (CSX); (GWC)
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, Henan Province, China
- Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang, Henan Province, China
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
- * E-mail: (CSX); (GWC)
| |
Collapse
|