1
|
Liang ZL, Zhang TH, Muinde J, Fan WL, Dong ZQ, Wu FM, Huang ZZ, Ge SQ. Ultrastructure and Spectral Characteristics of the Compound Eye of Asiophrida xanthospilota (Baly, 1881) (Coleoptera, Chrysomelidae). INSECTS 2024; 15:532. [PMID: 39057265 PMCID: PMC11277293 DOI: 10.3390/insects15070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (μCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others.
Collapse
Affiliation(s)
- Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Li Fan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Qun Dong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Ming Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Z.-L.L.); (T.-H.Z.); (J.M.); (W.-L.F.); (Z.-Q.D.); (Z.-Z.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yilmaz A, Belušič G, J Foster J, Tocco C, Khaldy L, Dacke M. Polarisation vision in the dark: green-sensitive photoreceptors in the nocturnal ball-rolling dung beetle Escarabaeus satyrus. J Exp Biol 2024; 227:jeb246374. [PMID: 38284763 DOI: 10.1242/jeb.246374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Many insects utilise the polarisation pattern of the sky to adjust their travelling directions. The extraction of directional information from this sky-wide cue is mediated by specialised photoreceptors located in the dorsal rim area (DRA). While this part of the eye is known to be sensitive to the ultraviolet, blue or green component of skylight, the latter has only been observed in insects active in dim light. To address the functional significance of green polarisation sensitivity, we define the spectral and morphological adaptations of the DRA in a nocturnal ball-rolling dung beetle-the only family of insects demonstrated to orient to the dim polarisation pattern in the night sky. Intracellular recordings revealed polarisation-sensitive green photoreceptors in the DRA of Escarabaeus satyrus. Behavioural experiments verified the navigational relevance of this finding. To quantify the adaptive value of green sensitivity for celestial orientation at night, we also obtained the polarisation properties of the night sky in the natural habitat of the beetle. Calculations of relative photon catch revealed that under a moonlit sky the green-sensitive DRA photoreceptors can be expected to catch an order of magnitude more photons compared with the UV-sensitive photoreceptors in the main retina. The green-sensitive photoreceptors - which also show a range of morphological adaptations for enhanced sensitivity - provide E. satyrus with a highly sensitive system for the extraction of directional information from the night sky.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
- Neurobiology, University of Konstanz, Universitätsstr. 10, 78464 Konstanz, Germany
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
3
|
Yilmaz A, El Jundi B, Belušič G, Byrne M, Baird E, Dacke M. Mechanisms of spectral orientation in a diurnal dung beetle. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210287. [PMID: 36058237 PMCID: PMC9441229 DOI: 10.1098/rstb.2021.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Ball rolling dung beetles use a wide range of cues to steer themselves along a fixed bearing, including the spectral gradient of scattered skylight that spans the sky. Here, we define the spectral sensitivity of the diurnal dung beetle Kheper lamarcki and use the information to explore the orientation performance under a range of spectral light combinations. We find that, when presented with spectrally diverse stimuli, the beetles primarily orient to the apparent brightness differences as perceived by their green photoreceptors. Under certain wavelength combinations, they also rely on spectral information to guide their movements, but the brightness and spectral directional information is never fully disentangled. Overall, our results suggest the use of a dichromatic, primitive colour vision system for the extraction of directional information from the celestial spectral gradient to support straight-line orientation. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| | - Basil El Jundi
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Department of Zoology, Division of Functional Morphology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
4
|
Ramesh B, Firneno TJ, Demuth JP. Divergence time estimation of genus Tribolium by extensive sampling of highly conserved orthologs. Mol Phylogenet Evol 2021; 159:107084. [PMID: 33540077 DOI: 10.1016/j.ympev.2021.107084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 11/15/2022]
Abstract
Tribolium castaneum, the red flour beetle, is among the most well-studied eukaryotic genetic model organisms. Tribolium often serves as a comparative bridge from highly derived Drosophila traits to other organisms. Simultaneously, as a member of the most diverse order of metazoans, Coleoptera, Tribolium informs us about innovations that accompany hyper diversity. However, understanding the tempo and mode of evolutionary innovation requires well-resolved, time-calibrated phylogenies, which are not available for Tribolium. The most recent effort to understand Tribolium phylogenetics used two mitochondrial and three nuclear markers. The study concluded that the genus may be paraphyletic and reported a broad range for divergence time estimates. Here we employ recent advances in Bayesian methods to estimate the relationships and divergence times among Tribolium castaneum, T. brevicornis, T. confusum, T. freemani, and Gnatocerus cornutus using 1368 orthologs conserved across all five species and an independent substitution rate estimate. We find that the most basal split within Tribolium occurred ~86 Mya [95% HPD 85.90-87.04 Mya] and that the most recent split was between T. freemani and T. castaneum at ~14 Mya [95% HPD 13.55-14.00]. Our results are consistent with broader phylogenetic analyses of insects and suggest that Cenozoic climate changes played a role in the Tribolium diversification.
Collapse
Affiliation(s)
- Balan Ramesh
- Department of Biology, The University of Texas at Arlington, TX 76019, USA.
| | - Thomas J Firneno
- Department of Biology, The University of Texas at Arlington, TX 76019, USA
| | - Jeffery P Demuth
- Department of Biology, The University of Texas at Arlington, TX 76019, USA.
| |
Collapse
|