1
|
Panda K, Sood V, Lal BB, Khanna R, Rastogi A, Ramakrishna G, Alam S. Liver histology and hepatic progenitor cell activity in pediatric acute liver failure: Implications for clinical outcome. Pediatr Transplant 2024; 28:e14662. [PMID: 38036869 DOI: 10.1111/petr.14662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hepatic progenitor cell (HPC) activity and regenerative process that follows pediatric acute liver failure (PALF) is still not well understood. This clinicopathological study was thus conducted with an aim to study the correlation of liver histology and HPC activity with outcomes in PALF. METHODS All PALF patients with available hepatic histological specimens were included and specimens were analyzed for hepatocyte loss, HPC activity [using cytokeratin (CK) 7, CK19, sex-determining region Y-related high mobility group box(SOX)9 and epithelial cell adhesion molecule (EpCAM)], hepatocyte proliferation (using Ki67), and hepatocyte senescence (using p53 and p21). RESULTS Ninety-four children were included: 22 (23.4%) survived with native liver (SNL) (i.e., the good outcome group) while rest (i.e., the poor outcome group) either died [33%, 35.1%] or received liver transplant (LT) [39%, 41.5%]. When compared to subjects with poor outcomes, those in the SNL group exhibited significantly less severe hepatocyte loss, fewer HPC/hpf, more proliferating hepatocytes, and less senescent hepatocytes (p < .05). Increasing severity of hepatocyte loss (adjusted OR: 9.95, 95% CI: 4.22-23.45, p < .001) was identified as an independent predictor of poor outcome. Eighty percent children with >50% native hepatocyte loss had poor outcome within 10 days of hospitalization. CONCLUSION In PALF, more severe hepatocyte loss, higher number of HPC activation, lesser number of proliferating hepatocytes, and greater number of senescent hepatocytes are associated with a poor outcome. Loss of >50% hepatocytes is an independent predictor of poor outcome in PALF.
Collapse
Affiliation(s)
- Kalpana Panda
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
2
|
Panda K, Sood V, Lal BB, Khanna R, Rastogi A, Ramakrishna G, Alam S. Liver histology and hepatic progenitor cell activity in pediatric acute liver failure: Implications for clinical outcome. Pediatr Transplant 2024; 28. [DOI: https:/doi.org/10.1111/petr.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/11/2023] [Indexed: 04/16/2025]
Abstract
AbstractBackgroundHepatic progenitor cell (HPC) activity and regenerative process that follows pediatric acute liver failure (PALF) is still not well understood. This clinicopathological study was thus conducted with an aim to study the correlation of liver histology and HPC activity with outcomes in PALF.MethodsAll PALF patients with available hepatic histological specimens were included and specimens were analyzed for hepatocyte loss, HPC activity [using cytokeratin (CK) 7, CK19, sex‐determining region Y‐related high mobility group box(SOX)9 and epithelial cell adhesion molecule (EpCAM)], hepatocyte proliferation (using Ki67), and hepatocyte senescence (using p53 and p21).ResultsNinety‐four children were included: 22 (23.4%) survived with native liver (SNL) (i.e., the good outcome group) while rest (i.e., the poor outcome group) either died [33%, 35.1%] or received liver transplant (LT) [39%, 41.5%]. When compared to subjects with poor outcomes, those in the SNL group exhibited significantly less severe hepatocyte loss, fewer HPC/hpf, more proliferating hepatocytes, and less senescent hepatocytes (p < .05). Increasing severity of hepatocyte loss (adjusted OR: 9.95, 95% CI: 4.22–23.45, p < .001) was identified as an independent predictor of poor outcome. Eighty percent children with >50% native hepatocyte loss had poor outcome within 10 days of hospitalization.ConclusionIn PALF, more severe hepatocyte loss, higher number of HPC activation, lesser number of proliferating hepatocytes, and greater number of senescent hepatocytes are associated with a poor outcome. Loss of >50% hepatocytes is an independent predictor of poor outcome in PALF.
Collapse
Affiliation(s)
- Kalpana Panda
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Vikrant Sood
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Rajeev Khanna
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Archana Rastogi
- Department of Pathology Institute of Liver and Biliary Sciences New Delhi India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine Institute of Liver and Biliary Sciences New Delhi India
| | - Seema Alam
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| |
Collapse
|
3
|
Shi J, Li G, Yuan X, Wang Y, Gong M, Li C, Ge X, Lu S. Exploration and verification of COVID-19-related hub genes in liver physiological and pathological regeneration. Front Bioeng Biotechnol 2023; 11:1135997. [PMID: 36911196 PMCID: PMC9997844 DOI: 10.3389/fbioe.2023.1135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives An acute injury is often accompanied by tissue regeneration. In this process, epithelial cells show a tendency of cell proliferation under the induction of injury stress, inflammatory factors, and other factors, accompanied by a temporary decline of cellular function. Regulating this regenerative process and avoiding chronic injury is a concern of regenerative medicine. The severe coronavirus disease 2019 (COVID-19) has posed a significant threat to people's health caused by the coronavirus. Acute liver failure (ALF) is a clinical syndrome resulting from rapid liver dysfunction with a fatal outcome. We hope to analyze the two diseases together to find a way for acute failure treatment. Methods COVID-19 dataset (GSE180226) and ALF dataset (GSE38941) were downloaded from the Gene Expression Omnibus (GEO) database, and the "Deseq2" package and "limma" package were used to identify differentially expressed genes (DEGs). Common DEGs were used for hub genes exploration, Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to verify the role of hub genes in liver regeneration during in vitro expansion of liver cells and a CCl4-induced ALF mice model. Results: The common gene analysis of the COVID-19 and ALF databases revealed 15 hub genes from 418 common DEGs. These hub genes, including CDC20, were related to cell proliferation and mitosis regulation, reflecting the consistent tissue regeneration change after the injury. Furthermore, hub genes were verified in vitro expansion of liver cells and in vivo ALF model. On this basis, the potential therapeutic small molecule of ALF was found by targeting the hub gene CDC20. Conclusion We have identified hub genes for epithelial cell regeneration under acute injury conditions and explored a new small molecule Apcin for liver function maintenance and ALF treatment. These findings may provide new approaches and ideas for treating COVID-19 patients with ALF.
Collapse
Affiliation(s)
- Jihang Shi
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Guangya Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Science Joint Graduate Program, College of Life Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Yafei Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ming Gong
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
4
|
Rastogi A, Rath I, Varadarajan A, Ramakrishna G, Bihari C, Maiwall R. Non-alcoholic fatty liver disease (NAFLD) in lean individuals - Single centre large cohort clinicopathologic and immunophenotypic study. Pathol Res Pract 2022; 238:154112. [PMID: 36126451 DOI: 10.1016/j.prp.2022.154112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease is one of the most common causes of chronic liver diseases and occurs even in lean individuals having normal or low body mass index (BMI). Crucial issue is understanding the clinical, pathobiologic and metabolic characteristics in comparison to obese patients. Very few studies have compared clinicopathological characteristics between lean and obese. Published literature is generally in a small cohort of patients, rarely included over-weight as separate category, and most often had non-standardized use of BMI criteria with discordant conclusions. There is very sparse published literature on liver biopsy-confirmed cohort and that to from Asia; also, none had explored the role of mediators such as stellate cells, progenitor cells and macrophages. AIMS To evaluate the prevalence of NAFLD in lean patients in a large cohort of histology-confirmed NAFLD, and explore clinico-pathological spectrum of lean NAFLD in comparison to over-weight and obese. Also, to investigate role of hepatic stellate cells, macrophage polarization and their relation to hepatic progenitor cells, in particular the relation to fibrosis and to different BMI categories. METHODS Prospective analysis of eleven-year retrospective cross-sectional data of all consecutive patients of NAFLD diagnosed in the period between the year 2011 and 2021. All histologically confirmed cases of NAFLD fulfilling inclusion and exclusion criteria were stratified to three groups according to BMI based on Asian criteria. Demographic, lab, metabolic, and histological comparisons between lean and overweight-obese patients were performed. Histological grading and staging of NAFLD components were performed by NAS-CRN score. Immunohistochemical and image analysis-based assessment and quantification of stellate cells, progenitor cells, and macrophage polarization was performed. Appropriate statistical methods were applied, and study was approved by the Institutional ethics committee. RESULTS Lean patients with biopsy-proven diagnosis constituted 21 % (n = 267) of total NAFLD (n = 1273). Other groups were-over-weight patients (232;18.2 %), and the highest were obese patients (774; 60.8 %). 13.9 % of the lean patients with NAFLD were under-weight with BMI<18.5 kg/m2. Lean patients had significantly lower BMI and waist circumference along with lesser fasting glucose levels in comparison to the other groups. Rest of the metabolic parameters were nearly similar. Lean patients showed higher serum ALT levels, and histological characteristics such as ballooning of hepatocytes and steatosis were also more marked in comparison to other groups. Lobular inflammation and advanced fibrosis were significantly less common in lean patients with NASH related cirrhosis found in only 20.9 % of them. Immunophenotypic studies revealed the inter-relationship of HPCs, HSCs, and macrophages was influenced by the stage of fibrosis and not by the BMI. CONCLUSIONS Prevalence of NAFLD in lean individuals in a histological-confirmed patient cohort was 21 %. (n = 267/1273). Major strengths of this study are large cohort of lean individuals from a single center, inclusion of only histology-confirmed cases, Asia specific BMI criteria usage, comparative clinical, metabolic, immune-morphologic and image analysis-based characterization, inclusion of over-weight in addition to obese patients, and investigating cross-talk of principal patho-physiologic markers.
Collapse
Affiliation(s)
- Archana Rastogi
- Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, Delhi 110070, India.
| | - Indira Rath
- Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, Delhi 110070, India.
| | | | - Gayatri Ramakrishna
- Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, Delhi 110070, India.
| | - Chhagan Bihari
- Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, Delhi 110070, India.
| | - Rakhi Maiwall
- Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, Delhi 110070, India.
| |
Collapse
|
5
|
Nautiyal N, Maheshwari D, Tripathi DM, Kumar D, Kumari R, Gupta S, Sharma S, Mohanty S, Parasar A, Bihari C, Biswas S, Rastogi A, Maiwall R, Kumar A, Sarin SK. Establishment of a murine model of acute-on-chronic liver failure with multi-organ dysfunction. Hepatol Int 2021; 15:1389-1401. [PMID: 34435344 DOI: 10.1007/s12072-021-10244-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Acute-on-chronic liver failure (ACLF) is a distinct clinical entity with high probability of organ failure and mortality. Since patients generally present late, experimental models are needed to understand the pathophysiology and natural course of the disease. METHODOLOGY To reproduce the syndrome of ACLF, chronic liver disease was induced in C57BL6 mice (6-8 weeks; approximately 20-24 g weight) by intraperitoneal administration of carbon tetrachloride (CCl4) for 10 weeks followed by an acute injury with acetaminophen (APAP) and lipopolysaccharide (LPS). Blood, ascitic fluid, and organs were collected to study cell death, regeneration, and fibrosis. RESULTS At 24 h post-APAP/LPS infusion, the liver tissue showed increased hepatocyte ballooning and endothelial cell TUNEL positivity. This was followed by progressive hepatocyte necrosis from perivascular region at day 7 to lobular region by day 11. ACLF (day 7 and day 11) animals showed increase in bilirubin (p < 0.05), prothrombin time (p < 0.0001), blood ammonia (p < 0.001), and portal pressure post-acute hepatocellular injury similar to human ACLF. Ascites was noticed by day 11 with median serum-ascites albumin gradient of 1.2 (1.1-1.3) g/dL. In comparison to cirrhosis, ACLF group (day 7 and day 11) showed significant decrease in Sirius red (p ≤ 0.0001), collagen1 (p < 0.0001), and a-SMA proportionate area (p < 0.0001) with loss of hepatocytes regeneration (p < 0.005). At day 11, ACLF animals also showed significant increase in serum creatinine (p < 0.05) and acute tubular necrosis suggestive of organ failure, compared to cirrhotic animals. CONCLUSION The CCL4/APAP/LPS (CALPS) model of ACLF mimics the clinical, biochemical, and histological features of ACLF with demonstrable progressive hepatocellular necrosis, liver failure, impaired regeneration, development of portal hypertension, and organ dysfunction in an animal with chronic liver disease.
Collapse
Affiliation(s)
- Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Greater Noida, India
| | - Deepanshu Maheshwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Dhananjay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Rekha Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Suchi Gupta
- All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Greater Noida, India
| | - Sujata Mohanty
- All India Institute of Medical Sciences, New Delhi, India
| | - Anupama Parasar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Greater Noida, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India.
| | - Shiv Kumar Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India. .,Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India.
| |
Collapse
|
6
|
Fontes P, Komori J, Lopez R, Marsh W, Lagasse E. Development of Ectopic Livers by Hepatocyte Transplantation Into Swine Lymph Nodes. Liver Transpl 2020; 26:1629-1643. [PMID: 32810371 PMCID: PMC7756213 DOI: 10.1002/lt.25872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Orthotopic liver transplantation continues to be the only effective therapy for patients with end-stage liver disease. Unfortunately, many of these patients are not considered transplant candidates, lacking effective therapeutic options that would address both the irreversible progression of their hepatic failure and the control of their portal hypertension. In this prospective study, a swine model was exploited to induce subacute liver failure. Autologous hepatocytes, isolated from the left hepatic lobe, were transplanted into the mesenteric lymph nodes (LNs) by direct cell injection. At 30-60 days after transplantation, hepatocyte engraftment in LNs was successfully identified in all transplanted animals with the degree of ectopic liver mass detected being proportional to the induced native liver injury. These ectopic livers developed within the LNs showed remarkable histologic features of swine hepatic lobules, including the formation of sinusoids and bile ducts. On the basis of our previous tyrosinemic mouse model and the present pig models of induced subacute liver failure, the generation of auxiliary liver tissue using the LNs as hepatocyte engraftment sites represents a potential therapeutic approach to supplement declining hepatic function in the treatment of liver disease.
Collapse
Affiliation(s)
- Paulo Fontes
- WVU MedicineDepartment of SurgerySchool of MedicineWest Virginia UniversityMorgantownWV,LyGenesis, Inc.PittsburghPA
| | - Junji Komori
- McGowan Institute for Regenerative MedicineDepartment of PathologySchool of MedicineUniversity of PittsburghPittsburghPA,Department of SurgeryTakamatsu Red Cross HospitalKagawaJapan
| | - Roberto Lopez
- WVU MedicineDepartment of SurgerySchool of MedicineWest Virginia UniversityMorgantownWV,LyGenesis, Inc.PittsburghPA
| | - Wallis Marsh
- WVU MedicineDepartment of SurgerySchool of MedicineWest Virginia UniversityMorgantownWV
| | - Eric Lagasse
- LyGenesis, Inc.PittsburghPA,McGowan Institute for Regenerative MedicineDepartment of PathologySchool of MedicineUniversity of PittsburghPittsburghPA
| |
Collapse
|
7
|
Philips CA, Augustine P. Still 'dwelling in the possibility' - critical update on stem cell therapy for acute on chronic liver failure. World J Stem Cells 2020; 12:1124-1132. [PMID: 33178396 PMCID: PMC7596449 DOI: 10.4252/wjsc.v12.i10.1124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells therapy could improve survival in patients with liver failure. Studies on stem cell therapy and related growth factors in decompensated cirrhosis has been on the forefront but has shown heterogenous results. Recent high-quality studies have shown a lack of efficacy and safety. Patients with acute-on-chronic liver failure (ACLF) are a unique group with high mortality in the short-term associated with rapid onset extrahepatic organ failures. In these patients, there is an urgent need to identify treatments that can improve liver cell function and mass, prevent sepsis/organ failure, ameliorate systemic inflammation, and increase transplant-free survival. Stem cells are a novel treatment in ACLF but with unclear efficacy and safety. In this narrative review, we discuss the basics of liver regeneration in patients with ACLF and update current clinical status of stem cell use in patients with ACLF for improving our understanding of future directions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India.
| | - Philip Augustine
- Department of Gastroenterology and Advanced GI Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India
| |
Collapse
|
8
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Shubham S, Kumar D, Rooge S, Maras JS, Maheshwari D, Nautiyal N, Kumari R, Bhat A, Kumar G, Rastogi A, Kumar S, Pamecha V, Maiwall R, Bihari C, Kumar A, Sarin SK. Cellular and functional loss of liver endothelial cells correlates with poor hepatocyte regeneration in acute-on-chronic liver failure. Hepatol Int 2019; 13:777-787. [PMID: 31515741 DOI: 10.1007/s12072-019-09983-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/17/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Acute hepatic insult triggers regeneration. If acute-on-chronic liver failure (ACLF) patients have a poorer regenerative response than acute liver failure (ALF) patients, and if so, the mechanisms underlying this, are not well understood. METHODS We investigated the status of hepatocyte proliferation, hepatic progenitor cell (HPC) mediated regeneration, non-parenchymal cells (through immunohistochemistery), cytokines and growth factors (cytokine bead array) in liver and peripheral blood of ACLF (n = 29) and ALF (n = 17) patients. Liver endothelial cells, mesenchymal cells and Kupffer cells were isolated from explant livers and analysis of regenerative factors was done by qRT-PCR. RESULTS Unlike ALF, the ACLF livers showed decreased hepatocyte proliferation (p < 0.001) and profound ductular-reaction with increased CK19 + hepatocytes (p < 0.0001). However, only decrease in Ki67+ hepatocytes was associated with 28 day mortality in ACLF (p < 0.001; HR = 0.78; 95% CI 0.69-0.88). In both groups, increase in plasma hepatocyte growth factor (HGF) (OR = 21.87 p = 0.002;), macrophage colony stimulating factor (MCSF) (OR = 21.73; p = 0.002) and stromal derived factor (SDF1)(OR = 10.2; p = 0.001) were associated with hepatocyte proliferation and decreased (> fivefolds) levels were associated with poor hepatocyte regeneration in ACLF patients. ACLF livers showed decrease in endothelial cells (p < 0.01) and expression of regenerative angiocrine factors C-X-C chemokine receptor type 7 (CXCR7), Inhibitor of DNA Binding 1(IDI) and HGF compared to ALF. In co-culture, while ALF liver mesenchymal stromal cells (LMSCs) induced the expression of CXCR7, IDI and HGF in human umbilical cord endothelial cells (HUVECs), the ACLF LMSCs were defective and showed decreased production of SDF-1, HGF and MCSF compared to ALF. CONCLUSIONS Decrease in hepatic endothelial cells and their regenerative angiocrine functions indicated by defective CXCR7-ID1 dependent HGF expression underlie the poor hepatocyte proliferation in ACLF compared to ALF patients. A robust hepatocyte self-replication is lacking in the livers of ACLF patients and is associated with poor survival.
Collapse
Affiliation(s)
- Smriti Shubham
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Dhananjay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Sheetalnath Rooge
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Jaswinder Sing Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Deepanshu Maheshwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Rekha Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Adil Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Guresh Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Senthil Kumar
- Department of HPB Surgery, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Viniyendra Pamecha
- Department of HPB Surgery, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India.
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110 070, India.
| |
Collapse
|
10
|
Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, Saigal S, Saraf N, Soin AS, Devarbhavi H, Kim DJ, Dhiman RK, Duseja A, Taneja S, Eapen CE, Goel A, Ning Q, Chen T, Ma K, Duan Z, Yu C, Treeprasertsuk S, Hamid SS, Butt AS, Jafri W, Shukla A, Saraswat V, Tan SS, Sood A, Midha V, Goyal O, Ghazinyan H, Arora A, Hu J, Sahu M, Rao PN, Lee GH, Lim SG, Lesmana LA, Lesmana CR, Shah S, Prasad VGM, Payawal DA, Abbas Z, Dokmeci AK, Sollano JD, Carpio G, Shresta A, Lau GK, Fazal Karim M, Shiha G, Gani R, Kalista KF, Yuen MF, Alam S, Khanna R, Sood V, Lal BB, Pamecha V, Jindal A, Rajan V, Arora V, Yokosuka O, Niriella MA, Li H, Qi X, Tanaka A, Mochida S, Chaudhuri DR, Gane E, Win KM, Chen WT, Rela M, Kapoor D, Rastogi A, Kale P, Rastogi A, Sharma CB, Bajpai M, Singh V, Premkumar M, Maharashi S, Olithselvan A, Philips CA, Srivastava A, Yachha SK, Wani ZA, Thapa BR, Saraya A, Shalimar, Kumar A, Wadhawan M, Gupta S, Madan K, Sakhuja P, Vij V, Sharma BC, Garg H, Garg V, Kalal C, et alSarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, Saigal S, Saraf N, Soin AS, Devarbhavi H, Kim DJ, Dhiman RK, Duseja A, Taneja S, Eapen CE, Goel A, Ning Q, Chen T, Ma K, Duan Z, Yu C, Treeprasertsuk S, Hamid SS, Butt AS, Jafri W, Shukla A, Saraswat V, Tan SS, Sood A, Midha V, Goyal O, Ghazinyan H, Arora A, Hu J, Sahu M, Rao PN, Lee GH, Lim SG, Lesmana LA, Lesmana CR, Shah S, Prasad VGM, Payawal DA, Abbas Z, Dokmeci AK, Sollano JD, Carpio G, Shresta A, Lau GK, Fazal Karim M, Shiha G, Gani R, Kalista KF, Yuen MF, Alam S, Khanna R, Sood V, Lal BB, Pamecha V, Jindal A, Rajan V, Arora V, Yokosuka O, Niriella MA, Li H, Qi X, Tanaka A, Mochida S, Chaudhuri DR, Gane E, Win KM, Chen WT, Rela M, Kapoor D, Rastogi A, Kale P, Rastogi A, Sharma CB, Bajpai M, Singh V, Premkumar M, Maharashi S, Olithselvan A, Philips CA, Srivastava A, Yachha SK, Wani ZA, Thapa BR, Saraya A, Shalimar, Kumar A, Wadhawan M, Gupta S, Madan K, Sakhuja P, Vij V, Sharma BC, Garg H, Garg V, Kalal C, Anand L, Vyas T, Mathur RP, Kumar G, Jain P, Pasupuleti SSR, Chawla YK, Chowdhury A, Alam S, Song DS, Yang JM, Yoon EL. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update. Hepatol Int 2019; 13:353-390. [PMID: 31172417 PMCID: PMC6728300 DOI: 10.1007/s12072-019-09946-3] [Show More Authors] [Citation(s) in RCA: 563] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
The first consensus report of the working party of the Asian Pacific Association for the Study of the Liver (APASL) set up in 2004 on acute-on-chronic liver failure (ACLF) was published in 2009. With international groups volunteering to join, the "APASL ACLF Research Consortium (AARC)" was formed in 2012, which continued to collect prospective ACLF patient data. Based on the prospective data analysis of nearly 1400 patients, the AARC consensus was published in 2014. In the past nearly four-and-a-half years, the AARC database has been enriched to about 5200 cases by major hepatology centers across Asia. The data published during the interim period were carefully analyzed and areas of contention and new developments in the field of ACLF were prioritized in a systematic manner. The AARC database was also approached for answering some of the issues where published data were limited, such as liver failure grading, its impact on the 'Golden Therapeutic Window', extrahepatic organ dysfunction and failure, development of sepsis, distinctive features of acute decompensation from ACLF and pediatric ACLF and the issues were analyzed. These initiatives concluded in a two-day meeting in October 2018 at New Delhi with finalization of the new AARC consensus. Only those statements, which were based on evidence using the Grade System and were unanimously recommended, were accepted. Finalized statements were again circulated to all the experts and subsequently presented at the AARC investigators meeting at the AASLD in November 2018. The suggestions from the experts were used to revise and finalize the consensus. After detailed deliberations and data analysis, the original definition of ACLF was found to withstand the test of time and be able to identify a homogenous group of patients presenting with liver failure. New management options including the algorithms for the management of coagulation disorders, renal replacement therapy, sepsis, variceal bleed, antivirals and criteria for liver transplantation for ACLF patients were proposed. The final consensus statements along with the relevant background information and areas requiring future studies are presented here.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Manoj K Sharma
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sanjiv Saigal
- Department of Hepatology, Medanta The Medicity, Gurgaon, India
| | - Neeraj Saraf
- Department of Hepatology, Medanta The Medicity, Gurgaon, India
| | - A S Soin
- Department of Hepatology, Medanta The Medicity, Gurgaon, India
| | | | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - R K Dhiman
- Department of Hepatology, PGIMER, Chandigarh, India
| | - Ajay Duseja
- Department of Hepatology, PGIMER, Chandigarh, India
| | - Sunil Taneja
- Department of Hepatology, PGIMER, Chandigarh, India
| | - C E Eapen
- Department of Hepatology, CMC, Vellore, India
| | - Ashish Goel
- Department of Hepatology, CMC, Vellore, India
| | - Q Ning
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Translational Hepatology Institute Capital Medical University, Beijing You'an Hospital, Beijing, China
| | - Ke Ma
- Institute and Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Duan
- Translational Hepatology Institute Capital Medical University, Beijing You'an Hospital, Beijing, China
| | - Chen Yu
- Translational Hepatology Institute Capital Medical University, Beijing You'an Hospital, Beijing, China
| | | | - S S Hamid
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Amna S Butt
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Wasim Jafri
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Akash Shukla
- Department of Gastroenterology, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, India
| | | | - Soek Siam Tan
- Department of Medicine, Hospital Selayang, Bata Caves, Selangor, Malaysia
| | - Ajit Sood
- Department of Gastroenterology, DMC, Ludhiana, India
| | - Vandana Midha
- Department of Gastroenterology, DMC, Ludhiana, India
| | - Omesh Goyal
- Department of Gastroenterology, DMC, Ludhiana, India
| | - Hasmik Ghazinyan
- Department of Hepatology, Nork Clinical Hospital of Infectious Disease, Yerevan, Armenia
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital and GRIPMER, New Delhi, Delhi, India
| | - Jinhua Hu
- Department of Medicine, 302 Millitary Hospital, Beijing, China
| | - Manoj Sahu
- Department of Gastroenterology and Hepatology Sciences, IMS & SUM Hospital, Bhubaneswar, Odisha, India
| | - P N Rao
- Asian Institute of Gastroenterology, Hyderabad, India
| | - Guan H Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Seng G Lim
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | | | | | - Samir Shah
- Department of Hepatology, Global Hospitals, Mumbai, India
| | | | - Diana A Payawal
- Fatima University Medical Center Manila, Manila, Philippines
| | - Zaigham Abbas
- Department of Medicine, Ziauddin University Hospital, Karachi, Pakistan
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Jose D Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - Gian Carpio
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - Ananta Shresta
- Department of Hepatology, Foundation Nepal Sitapaila Height, Kathmandu, Nepal
| | - G K Lau
- Department of Medicine, Humanity and Health Medical Group, New Kowloon, Hong Kong, China
| | - Md Fazal Karim
- Department of Hepatology, Sir Salimullah Medical College, Dhaka, Bangladesh
| | - Gamal Shiha
- Egyptian Liver Research Institute And Hospital, Cairo, Egypt
| | - Rino Gani
- Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine, Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Kemal Fariz Kalista
- Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine, Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Viniyendra Pamecha
- Department of Hepatobilliary Pancreatic Surgery and Liver Transplant, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - V Rajan
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Vinod Arora
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | | | - Hai Li
- Department of Gastroenterology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Qi
- CHESS Frontier Center, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Atsushi Tanaka
- Department of Medicine, Tokyo University School of Medicine, Tokyo, Japan
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | | | - Ed Gane
- New Zealand Liver Transplant Unit, Auckland Hospital, Auckland, New Zealand
| | | | - Wei Ting Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mohd Rela
- Department of Liver Transplant Surgery, Dr. Rela Institute and Medical Centre, Chennai, India
| | | | - Amit Rastogi
- Department of Hepatology, Medanta The Medicity, Gurgaon, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Chhagan Bihari Sharma
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Meenu Bajpai
- Department of Immunohematology and Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | | | | | | | - A Olithselvan
- Division of Liver Transplantation and Hepatology, Manipal Hospitals, Bangalore, India
| | - Cyriac Abby Philips
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, India
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, SGPGIMS, Lucknow, India
| | | | | | - B R Thapa
- Department of Gastroenterology and Pediatric Gastroenterology, PGIMER, Chandigarh, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, India
| | - Ashish Kumar
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital and GRIPMER, New Delhi, Delhi, India
| | - Manav Wadhawan
- Department of Gastroenterology, Hepatology and Liver Transplant, B L K Hospital, New Delhi, India
| | - Subash Gupta
- Centre for Liver and Biliary Science, Max Hospital, New Delhi, India
| | - Kaushal Madan
- Department of Gastroenterology, Hepatology and Liver Transplant, Max Hospital, New Delhi, India
| | - Puja Sakhuja
- Department of Pathology, GB Pant Hospital, New Delhi, India
| | - Vivek Vij
- Department of Liver Transplant and Hepatobilliary Surgery, Fortis Hospital, New Delhi, India
| | - Barjesh C Sharma
- Department of Gastroenterology, GB Pant Hospital, New Delhi, India
| | - Hitendra Garg
- Department of Gastroenterology, Hepatology and Liver Transplant, Apollo Hospital, New Delhi, India
| | - Vishal Garg
- Department of Gastroenterology, Hepatology and Liver Transplant, Apollo Hospital, New Delhi, India
| | - Chetan Kalal
- Department of Hepatology, Sir H N Reliance Hospital and Research Centre, Mumbai, India
| | - Lovkesh Anand
- Department of Gastroenterology and Hepatology, Narayana Hospital, Gurugram, India
| | - Tanmay Vyas
- Department of Hepatology, Parimal Multi-Speciality Hospital, Ahmedabad, India
| | - Rajan P Mathur
- Department of Nephrology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Guresh Kumar
- Department of Statistics and Clinical Research, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Priyanka Jain
- Department of Statistics and Clinical Research, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Samba Siva Rao Pasupuleti
- Department of Statistics and Clinical Research, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Yogesh K Chawla
- Department of Hepatology and Gastroenterology, Kalinga Institute of Med Sciences, KIIT University, Bhubaneswar, India
| | - Abhijit Chowdhury
- Department of Hepatology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Do Seon Song
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Mo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eileen L Yoon
- Department Of Internal Medicine, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
11
|
Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. Int J Mol Sci 2018; 19:ijms19102917. [PMID: 30257529 PMCID: PMC6213374 DOI: 10.3390/ijms19102917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Samira Safarikia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| |
Collapse
|
12
|
Damania A, Kumar A, Teotia AK, Kimura H, Kamihira M, Ijima H, Sarin SK, Kumar A. Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:114-126. [PMID: 29210278 DOI: 10.1021/acsami.7b13727] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30-60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20-60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications.
Collapse
Affiliation(s)
- Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| | - Anupam Kumar
- Institute of Liver and Biliary Sciences , Vasant Kunj, New Delhi 110070, India
| | - Arun K Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| | - Haruna Kimura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences , Vasant Kunj, New Delhi 110070, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| |
Collapse
|
13
|
Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells Int 2016; 2016:3658013. [PMID: 26880956 PMCID: PMC4737003 DOI: 10.1155/2016/3658013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches' matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin2+ unipotent hepatocytic progenitors linked on their lateral borders to endothelia forming the central vein, and contribute to normal turnover of mature hepatocytes. Their relationship to the other stem/progenitors is undefined. Stem/progenitor niches have important implications in regenerative medicine for the liver and biliary tree and in pathogenic processes leading to diseases of these tissues.
Collapse
|
14
|
Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells 2015; 34:135-47. [PMID: 26389810 DOI: 10.1002/stem.2210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is strongly associated with chronic inflammation. As an alternative to conventional treatments for fibrosis, mesenchymal stem cells (MSCs) therapy is found to be attractive due to its immunomodulatory functions. However, low survival rate and profibrogenic properties of MSCs remain the major concerns, leading to skepticism in many investigators. Here, we have asked the question whether bone marrow (BM)-derived CD45 cells is the better candidate than MSCs to treat fibrosis, if so, what are the molecular mechanisms that make such distinction. Using CCl4 -induced liver fibrosis mouse model of a Metavir fibrosis score 3, we showed that BM-CD45 cells have better antifibrotic effect than adipose-derived (AD)-MSCs. In fact, our study revealed that antifibrotic potential of CD45 cells are compromised by the presence of MSCs. This difference was apparently due to significantly high level expressions of matrix metalloproteinases-9 and 13, and the suppression of hepatic stellate cells' (HpSCs) activation in the CD45 cells transplantation group. Mechanism dissection studied in vitro supported the above opposing results and revealed that CD45 cell-secreted FasL induced apoptotic death of activated HpSCs. Further analyses suggest that MSC-secreted transforming growth factor β and insulin-like growth factor-1 promoted myofibroblastic differentiation of HpSCs and their proliferation. Additionally, the transplantation of CD45 cells led to functional improvement of the liver through repair and regeneration. Thus, BM-derived CD45 cells appear as a superior candidate for the treatment of liver fibrosis due to structural and functional improvement of CCl4 -induced fibrotic liver, which were much lower in case of AD-MSC therapy.
Collapse
Affiliation(s)
- Prakash Baligar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Snehasish Mukherjee
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena Kochat
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver & Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
15
|
Maiwall R, Kumar S, Chandel SS, Kumar G, Rastogi A, Bihari C, Sharma MK, Thakur B, Jamwal K, Nayak S, Mathur RP, Sarin SK. AKI in patients with acute on chronic liver failure is different from acute decompensation of cirrhosis. Hepatol Int 2015; 9:627-39. [DOI: 10.1007/s12072-015-9653-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
|
16
|
Sarin SK, Kedarisetty CK, Abbas Z, Amarapurkar D, Bihari C, Chan AC, Chawla YK, Dokmeci AK, Garg H, Ghazinyan H, Hamid S, Kim DJ, Komolmit P, Lata S, Lee GH, Lesmana LA, Mahtab M, Maiwall R, Moreau R, Ning Q, Pamecha V, Payawal DA, Rastogi A, Rahman S, Rela M, Saraya A, Samuel D, Saraswat V, Shah S, Shiha G, Sharma BC, Sharma MK, Sharma K, Butt AS, Tan SS, Vashishtha C, Wani ZA, Yuen MF, Yokosuka O. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol Int 2014; 8:453-471. [PMID: 26202751 DOI: 10.1007/s12072-014-9580-2] [Citation(s) in RCA: 491] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
The first consensus report of the working party of the Asian Pacific Association for the Study of the Liver (APASL) set up in 2004 on acute-on-chronic liver failure (ACLF) was published in 2009. Due to the rapid advancements in the knowledge and available information, a consortium of members from countries across Asia Pacific, "APASL ACLF Research Consortium (AARC)," was formed in 2012. A large cohort of retrospective and prospective data of ACLF patients was collated and followed up in this data base. The current ACLF definition was reassessed based on the new AARC data base. These initiatives were concluded on a 2-day meeting in February 2014 at New Delhi and led to the development of the final AARC consensus. Only those statements which were based on the evidence and were unanimously recommended were accepted. These statements were circulated again to all the experts and subsequently presented at the annual conference of the APASL at Brisbane, on March 14, 2014. The suggestions from the delegates were analyzed by the expert panel, and the modifications in the consensus were made. The final consensus and guidelines document was prepared. After detailed deliberations and data analysis, the original proposed definition was found to withstand the test of time and identify a homogenous group of patients presenting with liver failure. Based on the AARC data, liver failure grading, and its impact on the "Golden therapeutic Window," extra-hepatic organ failure and development of sepsis were analyzed. New management options including the algorithms for the management of coagulation disorders, renal replacement therapy, sepsis, variceal bleed, antivirals, and criteria for liver transplantation for ACLF patients were proposed. The final consensus statements along with the relevant background information are presented here.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | | | - Zaigham Abbas
- Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Deepak Amarapurkar
- Department of Gastroenterology and Hepatology, Bombay Hospital and Medical Research, Mumbai, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Albert C Chan
- Division of Hepatobiliary and Pancreatic Surgery, and Liver Transplantation, Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yogesh Kumar Chawla
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - A Kadir Dokmeci
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Hitendra Garg
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Hasmik Ghazinyan
- Department of Hepatology, Nork Clinical Hospital of Infectious Diseases, Yerevan, Armenia
| | - Saeed Hamid
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Dong Joon Kim
- Center for Liver and Digestive Diseases, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Piyawat Komolmit
- Division of Gastroenterology and Hepatology, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suman Lata
- Department of Nephrology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Guan Huei Lee
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
| | | | - Mamun Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Richard Moreau
- Inserm, U1149, Centre de recherche sur l'Inflammation (CRI), Paris, France
- UMR_S 1149, Labex INFLAMEX, Université Paris Diderot Paris 7, Paris, France
- Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, APHP, Clichy, France
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Viniyendra Pamecha
- Department of Hepatobiliary Surgery, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Mohamed Rela
- Institute of Liver Diseases and Transplantation, Global Health City, Chennai, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Didier Samuel
- INSERM, Centre Hépatobiliarie, Hôpital Paul Brousse, Villejuif, France
| | - Vivek Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Samir Shah
- Department of Gastroenterology and Hepatology, Global Hospitals, Mumbai, India
| | - Gamal Shiha
- Department of Internal Medicine, Egyptian Liver Research Institute and Hospital, Cairo, Egypt
| | | | - Manoj Kumar Sharma
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Kapil Sharma
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Amna Subhan Butt
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Soek Siam Tan
- Department of Gastroenterology and Hepatology, Selayang Hospital, Kepong, Malaysia
| | - Chitranshu Vashishtha
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Zeeshan Ahmed Wani
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|