1
|
García-Montenegro M, Narbaitz M, Metrebian MF, Pavlovsky A, Slavutsky I. PD-L1/PD-L2 genetic profile in the molecular cytogenetic classification of classic Hodgkin lymphoma. Virchows Arch 2025; 486:1039-1047. [PMID: 39976683 DOI: 10.1007/s00428-025-04047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/06/2025] [Accepted: 01/29/2025] [Indexed: 05/22/2025]
Abstract
Genomic imbalance at 9p24.1 locus, the chromosome region that maps PD-L1 and PD-L-2 (programmed death ligand 1 and 2) genes, is a recurrent alteration in classic Hodgkin lymphoma (cHL). We analyzed 9p24.1 imbalance by fluorescence in situ hybridization assay on formalin-fixed paraffin-embedded biopsies of 28 patients with newly diagnosed cHL to characterize the genetic profiles. Results were correlated with PD-L1 (H-score) and LMP-1 (latent membrane protein 1) protein expression of Epstein-Barr virus by immunohistochemistry and clinical features. Genomic alterations in Hodgkin/Reed Sternberg (H/RS) cells were classified as amplification, copy gain, and polysomy. Three molecular cytogenetic groups were defined according to the type and frequency of the copy number alteration: Group A (with amplification) 32%, Group G (with > 50% cells with copy gains but without amplification) 36%, and Group P (with ≥ 50% cells with polysomies but without amplification) 32%. A different frequency of copy gains (p = 0.02) and polysomies (p ≤ 0.01) among groups was found. A negative correlation between the percentage of H/RS cells with polysomies and the PD-L1 protein expression (p ≤ 0.01) was observed. Tumor microenvironmental cells showed chromosome 9 monosomy particularly associated to Group P. The highest H-score mean value was observed in Group A (265.6), while Groups G and P showed 123 and 60.3 H-score, respectively. Group P showed the highest mean age (p = 0.036) and increased frequency of advanced stages, B symptoms, and extranodal involvement, while Groups A and G were associated with localized stages (p = 0.035) and bulky mass, highlighting the importance of 9p24.1 genomic imbalance profile in the biological characterization of cHL.
Collapse
Affiliation(s)
- Mauro García-Montenegro
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, J.A. Pacheco de Melo 3081, C1425AUM, Buenos Aires, Argentina.
| | - Marina Narbaitz
- Servicio de Patología, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
- Servicio de Patología, Fundaleu, Buenos Aires, Argentina
| | - María Fernanda Metrebian
- Servicio de Patología, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Astrid Pavlovsky
- Servicio de Hematología, Fundaleu, Buenos Aires, Argentina
- Centro de Hematología Pavlovsky, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, J.A. Pacheco de Melo 3081, C1425AUM, Buenos Aires, Argentina
| |
Collapse
|
2
|
Abstract
Lymphoproliferative disorders comprise 50% to 60% of all mediastinal malignancies in both children and adults. Primary mediastinal involvement is rare (∼5%), whereas secondary mediastinal involvement by systemic disease is more common (10% to 25%). Primary mediastinal disease is defined as involvement by a lymphoproliferative disorder of mediastinal lymph nodes, the thymus, and/or extranodal mediastinal organs without evidence of systemic disease at presentation. In this review, the clinical, radiologic, histopathologic, immunohistochemical, and genetic features of some of the most characteristic mediastinal lymphoproliferative disorders are presented. The entities discussed here include: classic Hodgkin lymphoma with emphasis on nodular sclerosis and mixed cellularity types, and non-Hodgkin lymphomas, including primary mediastinal (thymic) large B-cell lymphoma, mediastinal gray zone lymphoma, mediastinal diffuse large B-cell lymphoma, thymic marginal zone lymphoma, mediastinal plasmacytoma, T-lymphoblastic lymphoma, and anaplastic large cell lymphoma. Although not a malignant process, hyaline vascular Castleman disease is also discussed here as this disorder commonly involves the mediastinum. Despite multiple advances in hematopathology in recent decades, the day-to-day diagnosis of these lesions still requires a morphologic approach and a proper selection of immunohistochemical markers. For this reason, it is crucial for general pathologists to be familiar with these entities and their particular clinicoradiologic presentation.
Collapse
Affiliation(s)
- Sergio Pina-Oviedo
- Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
3
|
Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13040682. [PMID: 33567641 PMCID: PMC7915917 DOI: 10.3390/cancers13040682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is composed of many reactive and only a few cancer cells, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. Due to the scarcity of these cells, it was difficult to perform high-throughput molecular investigations on them for a long time. With the help of recently developed methods, it is now possible to analyze their genomes. This review summarizes the genetic alterations found in HRS and LP cells that impact immune evasion, proliferation and circumvention of programmed cell death in HL. Understanding these underlying molecular mechanisms is essential, as they may be of prognostic and predictive value and help to improve the therapy especially for patients with recurrent or treatment-resistant disease. Abstract Background: Hodgkin lymphoma (HL) is predominantly composed of reactive, non-neoplastic cells surrounding scarcely distributed tumor cells, that is, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. This scarcity impeded the analysis of the tumor cell genomes for a long time, but recently developed methods (especially laser capture microdissection, flow cytometry/fluorescence-activated cell sorting) facilitated molecular investigation, elucidating the pathophysiological principles of “Hodgkin lymphomagenesis”. Methods: We reviewed the relevant literature of the last three decades focusing on the genomic landscape of classic and nodular lymphocyte predominant HL (NLPHL) and summarized molecular cornerstones. Results: Firstly, the malignant cells of HL evade the immune system by altered expression of PDL1/2, B2M and MHC class I and II due to various genetic alterations. Secondly, tumor growth is promoted by permanently activated JAK/STAT signaling due to pervasive mutations of multiple genes involved in the pathway. Thirdly, apoptosis of neoplastic cells is prevented by alterations of NF-κB compounds and the PI3K/AKT/mTOR axis. Additionally, Epstein-Barr virus infection can simultaneously activate JAK/STAT and NF-κB, similarly leading to enhanced survival and evasion of apoptosis. Finally, epigenetic phenomena such as promoter hypermethylation lead to the downregulation of B-lineage-specific, tumor-suppressor and immune regulation genes. Conclusion: The blueprint of HL genomics has been laid, paving the way for future investigations into its complex pathophysiology.
Collapse
|
4
|
Manso R, Rodríguez-Perales S, Torres-Ruiz R, Santonja C, Rodríguez-Pinilla SM. PD-L1 expression in peripheral T-cell lymphomas is not related to either PD-L1 gene amplification or rearrangements. Leuk Lymphoma 2021; 62:1648-1656. [PMID: 33550887 DOI: 10.1080/10428194.2021.1881511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nodal peripheral T-cell lymphomas (n-PTCL) are aggressive lymphomas with no specific treatment. Programmed death 1 (PD-1) inhibits T-cell activation and proliferation, and the expression of its ligand PD-L1 has been associated with worse prognosis in some tumors. We performed immunohistochemistry for PD-1, p-STAT3, and PD-L1 (Clones SP142/263/22C3/28.8) and FISH studies for PD-L1/2 genes in chromosome 9p in a series of 168 formalin-fixed, paraffin-embedded n-PTCL samples. PD-L1 (clone 263) was the most frequently detected in both tumor cells (especially in the ALCL subgroup) and the microenvironment (especially in the AITL subgroup). In five ALCL cases, 3-4 copies of the two loci of chromosome 9 were found, suggestive of polyploidy. PD-L1 correlated with p-STAT3 on tumor cells. PD-1 expression in tumor cells was related to expression of PD-L1 in microenvironment. The expression of PD-L1 on tumor cells or microenvironment suggests that some n-PTCL cases might benefit from immune check-point modulation therapy.
Collapse
Affiliation(s)
- Rebeca Manso
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Santonja
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | |
Collapse
|
5
|
Menter T, Tzankov A, Dirnhofer S. The tumor microenvironment of lymphomas: Insights into the potential role and modes of actions of checkpoint inhibitors. Hematol Oncol 2020; 39:3-10. [PMID: 33105031 DOI: 10.1002/hon.2821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) - a term comprising non-neoplastic cells and extracellular matrix as well as various cytokines, chemokines, growth factors, and other substances in the vicinity of tumor cells - is an integrative part of most tumors including lymphomas. Interactions between lymphoma cells and the TME are vital for survival and proliferation of the former. In addition, lymphoma cells often reprogram the TME to protect them from defense mechanisms of the host's immune system. In this review, we will introduce the role of the tumor microenvironment (TME) for lymphoma cells looking at direct cell-cell interactions as well as cytokine-related communications. The immunomodulative/immunosuppressive role of the TME is more and more coming into the focus of potential new targeted therapies, and thus a special attention will be given to the interactions of immune checkpoints such as programed cell death protein 1 and L1 (PD-1/PD-L1), T-cell immunoglobulin and mucin-domain containing protein-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), and cytotoxic T-lymphocyte-associated protein-4 (CTLA4) with the TME, as well as their expression by both lymphoma cells and cells of the TME. Aspects of the TME will be discussed for indolent and aggressive B-cell lymphomas, Hodgkin lymphomas, and T-cell lymphomas. In addition, the potential influence of other immunomodulators such as lenalidomide will be briefly touched. The complex role of the TME is in the focus of new therapeutic options. In order to exploit its full therapeutic potential, however, a thorough understanding of TME biology and interaction between lymphoma cells and the TME, as well as the host's immune system and the TME is necessary.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Menter T, Tzankov A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiology 2019; 86:225-236. [PMID: 31574515 DOI: 10.1159/000502912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022] Open
Abstract
It has become evident that the microenvironment - lymphocytes, macrophages, fibroblasts as well as the extracellular matrix, cytokines, chemokines, and a plethora of other cells, structures and substances residing in the vicinity of tumor cells - plays an important part in the maintenance of cancer growth and survival. This is also relevant in lymphomas. In this review, we give an outline on the importance of the microenvironment for tumors in general and lymphomas in particular, by highlighting certain basic principles of tumor-microenvironment interaction. The relationship of lymphomas and their microenvironment is multifaceted: lymphoma cells need growth factors and cytokines derived from microenvironmental cells for their sustenance and growth. On the contrary, many lymphomas silence or at least deregulate the immune system to escape recognition and subsequent elimination by immune cells, while giving advantage to suppressive microenvironmental compounds such as M2 polarized macrophages, regulatory T-cells, mast cells, and immunosuppressive fibroblasts. We also give a detailed insight across different lymphoma types to show the variety of tumor-microenvironment interactions. Due to its tremendous importance, the microenvironment has also become a new target for oncologic therapy. The most important finding concerning lymphomas with a focus on immunomodulatory substances is also, therefore, highlighted.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland,
| |
Collapse
|
8
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|