1
|
Vendrell JA, Ban IO, Solassol I, Audran P, Cabello-Aguilar S, Topart D, Lindet-Bourgeois C, Colombo PE, Legouffe E, D’Hondt V, Fabbro M, Solassol J. Differential Sensitivity of Germline and Somatic BRCA Variants to PARP Inhibitor in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2023; 24:14181. [PMID: 37762485 PMCID: PMC10532320 DOI: 10.3390/ijms241814181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The introduction of PARP inhibitors (PARPis) as a treatment option for patients with high-grade serous ovarian cancer (HGSOC) modified the approach of BRCA testing worldwide. In this study, we aim to evaluate the impact of BRCA1 and BRCA2 variants on treatment response and survival outcomes in patients diagnosed in our institution. METHODS A total of 805 HGSOC samples underwent BRCA1 and BRCA2 variant detection by using next-generation sequencing (NGS). Among them, a pathogenic alteration was detected in 104 specimens. Clinicopathological features and germline status were recovered, and alteration types were further characterized. The clinical significance of variant type in terms of response to chemotherapy and to PARPis as well as overall survival were evaluated using univariate analysis. RESULTS In our cohort, 13.2% of the HGSOC samples harbored a pathogenic BRCA1 or BRCA2 variant, among which 58.7% were inherited. No difference was observed between germline and somatic variants in terms of the gene altered. Interestingly, patients with somatic variants only (no germline) demonstrated better outcomes under PARPi treatment compared to those with germline ones. CONCLUSION The determination of the inheritance or acquisition of BRCA1 and BRCA2 alterations could provide valuable information for improving management strategies and predicting the outcome of patients with HGSOC.
Collapse
Affiliation(s)
- Julie A. Vendrell
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (J.A.V.); (I.O.B.); (S.C.-A.)
| | - Iulian O. Ban
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (J.A.V.); (I.O.B.); (S.C.-A.)
| | - Isabelle Solassol
- Unité de Recherche Translationnelle, Institut Régional du Cancer de Montpellier (ICM), 34090 Montpellier, France;
| | - Patricia Audran
- Département d’Anatomo-Pathologie, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34090 Montpellier, France;
| | - Simon Cabello-Aguilar
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (J.A.V.); (I.O.B.); (S.C.-A.)
- Montpellier BioInformatics for Clinical Diagnosis (MOBIDIC), Molecular Medicine and Genomics Platform (PMMG), CHU Montpellier, 34295 Montpellier, France
| | - Delphine Topart
- Oncologie Médicale, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (D.T.); (C.L.-B.)
| | - Clothilde Lindet-Bourgeois
- Oncologie Médicale, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (D.T.); (C.L.-B.)
| | - Pierre-Emmanuel Colombo
- Département de Chirurgie Oncologique, Institut Régional du Cancer de Montpellier (ICM), 34090 Montpellier, France;
| | - Eric Legouffe
- Oncologie Médicale, Institut de Cancérologie du Gard, 30900 Nîmes, France;
| | - Véronique D’Hondt
- Département d’Oncologie Médicale, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34090 Montpellier, France; (V.D.); (M.F.)
| | - Michel Fabbro
- Département d’Oncologie Médicale, Institut Régional du Cancer de Montpellier (ICM), Université de Montpellier, 34090 Montpellier, France; (V.D.); (M.F.)
| | - Jérôme Solassol
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (J.A.V.); (I.O.B.); (S.C.-A.)
- Montpellier Research Cancer Institute (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1194, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|
2
|
Rădoi VE, Țurcan M, Maioru OV, Dan A, Bohîlțea LC, Dumitrescu EA, Gheorghe AS, Stănculeanu DL, Thodi G, Loukas YL, Săbău ID. Homologous Recombination Deficiency Score Determined by Genomic Instability in a Romanian Cohort. Diagnostics (Basel) 2023; 13:1896. [PMID: 37296748 PMCID: PMC10252278 DOI: 10.3390/diagnostics13111896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Homologous Recombination Deficiency (HRD) Score, determined by evaluating genomic instability through the assessment of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST), serves as a crucial biomarker for identifying patients who might benefit from targeted therapies, such as PARP inhibitors (PARPi). This study aimed to investigate the efficacy of HRD testing in high-grade serous ovarian carcinoma, tubal, and peritoneal cancer patients who are negative for somatic BRCA1 and BRCA2 mutations and to evaluate the impact of HRD status on Bevacizumab and PARPi therapy response. A cohort of 100 Romanian female patients, aged 42-77, was initially selected. Among them, 30 patients had unsuitable samples for HRD testing due to insufficient tumor content or DNA integrity. Using the OncoScan C.N.V. platform, HRD testing was successfully performed on the remaining 70 patients, with 20 testing negative and 50 testing positive for HRD. Among the HRD-positive patients, 35 were eligible for and benefited from PARPi maintenance therapy, resulting in a median progression-free survival (PFS) increase from 4 months to 8.2 months. Our findings support the importance of HRD testing in ovarian cancer patients, demonstrating the potential therapeutic advantage of PARPi therapy in HRD-positive patients without somatic BRCA1/2 mutations.
Collapse
Affiliation(s)
- Viorica-Elena Rădoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
- Independent Researcher, 010987 Bucharest, Romania
- Sanador, 011026 Bucharest, Romania
| | - Mihaela Țurcan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| | - Ovidiu Virgil Maioru
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Andra Dan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Laurentiu Camil Bohîlțea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
| | - Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Georgia Thodi
- Neoscreen Diagnostic Laboratory, Voreiou Ipeirou, 15235 Athens, Greece;
| | - Yannis L. Loukas
- School of Pharmacy, University of Athens, Panepistimiolopis, 15771 Zografou, Greece;
| | - Ileana-Delia Săbău
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| |
Collapse
|
3
|
Laboratory Cross-Comparison and Ring Test Trial for Tumor BRCA Testing in a Multicenter Epithelial Ovarian Cancer Series: The BORNEO GEICO 60-0 Study. J Pers Med 2022; 12:jpm12111842. [PMID: 36579549 PMCID: PMC9698073 DOI: 10.3390/jpm12111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Germline and tumor BRCA testing constitutes a valuable tool for clinical decision-making in the management of epithelial ovarian cancer (EOC) patients. Tissue testing is able to identify both germline (g) and somatic (s) BRCA variants, but tissue preservation methods and the widespread implementation of NGS represent pre-analytical and analytical challenges that need to be managed. This study was carried out on a multicenter prospective GEICO cohort of EOC patients with known gBRCA status in order to determine the inter-laboratory reproducibility of tissue sBRCA testing. The study consisted of two independent experimental approaches, a bilateral comparison between two reference laboratories (RLs) testing 82 formalin-paraffin-embedded (FFPE) EOC samples each, and a Ring Test Trial (RTT) with five participating clinical laboratories (CLs) evaluating the performance of tissue BRCA testing in a total of nine samples. Importantly, labs employed their own locally adopted next-generation sequencing (NGS) analytical approach. BRCA mutation frequency in the RL sub-study cohort was 23.17%: 12 (63.1%) germline and 6 (31.6%) somatic. Concordance between the two RLs with respect to BRCA status was 84.2% (gBRCA 100%). The RTT study distributed a total of nine samples (three commercial synthetic human FFPE references, three FFPE, and three OC DNA) among five CLs. The median concordance detection rate among them was 64.7% (range: 35.3-70.6%). Analytical discrepancies were mainly due to the minimum variant allele frequency thresholds, bioinformatic pipeline filters, and downstream variant interpretation, some of them with consequences of clinical relevance. Our study demonstrates a wide range of concordance in the identification and interpretation of BRCA sequencing data, highlighting the relevance of establishing standard criteria for detecting, interpreting, and reporting BRCA variants.
Collapse
|
4
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
5
|
Grafodatskaya D, O'Rielly DD, Bedard K, Butcher DT, Howlett CJ, Lytwyn A, McCready E, Parboosingh J, Spriggs EL, Vaags AK, Stockley TL. Practice guidelines for BRCA1/2 tumour testing in ovarian cancer. J Med Genet 2022; 59:727-736. [PMID: 35393334 PMCID: PMC9340048 DOI: 10.1136/jmedgenet-2021-108238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this document is to provide pre-analytical, analytical and post-analytical considerations and recommendations to Canadian clinical laboratories developing, validating and offering next-generation sequencing (NGS)-based BRCA1 and BRCA2 (BRCA1/2) tumour testing in ovarian cancers. This document was drafted by the members of the Canadian College of Medical Geneticists (CCMG) somatic BRCA Ad Hoc Working Group, and representatives from the Canadian Association of Pathologists. The document was circulated to the CCMG members for comment. Following incorporation of feedback, this document has been approved by the CCMG board of directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. The current CCMG Practice Guidelines were developed as a resource for clinical laboratories in Canada; however, they are not inclusive of all information laboratories should consider in the validation and use of NGS for BRCA1/2 tumour testing in ovarian cancers.
Collapse
Affiliation(s)
- Daria Grafodatskaya
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Darren D O'Rielly
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Centre for Translational Genomes & Division of Genetics, Eastern Regional Health Authority, St. John's, Newfoundland, Canada
| | - Karine Bedard
- Département de Pathologie et Biologie cellulaire, Université de Montréal, Montreal, Québec, Canada.,Laboratoire de Diagnostic Moléculaire, Centre hospitalier de l'Université de Montréal, Montreal, Québec, Canada
| | - Darci T Butcher
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Wester University, London, Ontario, Canada
| | - Alice Lytwyn
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Jillian Parboosingh
- Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Genetics and Genomics, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Elizabeth L Spriggs
- Genomics, Diagnostic Services, Shared Health Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea K Vaags
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Tracy L Stockley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada .,Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Tumor BRCA Testing in Epithelial Ovarian Cancers: Past and Future-Five-Years' Single-Institution Experience of 762 Consecutive Patients. Cancers (Basel) 2022; 14:cancers14071638. [PMID: 35406410 PMCID: PMC8996829 DOI: 10.3390/cancers14071638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumor BRCA testing is crucial in the clinical management of women affected by epithelial ovarian cancer (EOC). In the present study, we aimed to report the results of five years of experience in tumor BRCA testing performed in a single-institution diagnostic setting. We profiled 762 consecutive EOC patients with a failure rate of less than 1% and less than two weeks of turnaround time, which is consistent with the clinical needs. We identified 23.4% of cases with pathogenic/likely pathogenic mutations, including 76% of patients affected by germline and 24% by somatic alterations. Here, we proposed a comprehensive and multidisciplinary clinical workflow that could be successfully followed for the identification of somatic as well as germline alterations, maximizing the benefit of BRCA testing both from a therapeutic and risk assessment perspective. Abstract The establishment of PARP inhibitors in the treatment of epithelial ovarian carcinoma (EOC) has prompt BRCA assessment at the time of diagnosis. We described our five years of experience of tumor BRCA testing, as part of a multidisciplinary workflow for the management of EOC patients. We used a BRCA next-generation sequencing (NGS) test for profiling formalin-fixed, paraffin-embedded (FFPE) EOCs of 762 consecutive patients, with a success rate of 99.7% and a median turnaround time of 12 days. We found 178 (23.4%) cases with pathogenic/likely pathogenic (P/LP) mutations, 74 (9.7%) cases with variants of uncertain significance and 508 (66.8%) wild type tumors. Among 174 patients without P/LP mutations and investigated with multiple-ligation probe-amplification analysis on peripheral blood, two (1.1%) were positive for large rearrangements. Patients with P/LP alterations and/or with positive family history were referred to genetic counselling. Comparing tumor and blood NGS test results of 256 patients, we obtained a tumor test negative predictive value of 100% and we defined 76% of P/LP alterations as germline and 24% as somatic variants. The proposed workflow may successfully identify EOC patients with BRCA1/2 alteration, guiding both therapeutic and risk assessment clinical decisions.
Collapse
|
7
|
Stegel V, Blatnik A, Škof E, Dragoš VŠ, Krajc M, Gregorič B, Škerl P, Strojnik K, Klančar G, Banjac M, Žgajnar J, Ravnik M, Novaković S. Real-World Data on Detection of Germline and Somatic Pathogenic/Likely Pathogenic Variants in BRCA1/2 and Other Susceptibility Genes in Ovarian Cancer Patients Using Next Generation Sequencing. Cancers (Basel) 2022; 14:1434. [PMID: 35326583 PMCID: PMC8946582 DOI: 10.3390/cancers14061434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Detection of germline and somatic pathogenic/likely pathogenic variants (PV/LPV) in BRCA genes is at the moment a prerequisite for use of PARP inhibitors in different treatment settings of different tumors. The aim of our study was to determine the most appropriate testing workflow in epithelial ovarian cancer (EOC) patients using germline and tumor genotyping of BRCA and other hereditary breast and/or ovarian cancer (HBOC) susceptibility genes. Consecutive patients with advanced non-mucinous EOC, who responded to platinum-based chemotherapy, were included in the study. DNA extracted from blood and FFPE tumor tissue were genotyped using NGS panels TruSightCancer/Hereditary and TruSight Tumor 170. Among 170 EOC patients, 21.8% had BRCA germline or somatic PV/LPV, and additionally 6.4% had PV/LPV in other HBOC genes. Sensitivity of tumor genotyping for detection of germline PV/LPV was 96.2% for BRCA genes and 93.3% for HBOC genes. With germline genotyping-only strategy, 58.8% of HBOC PV/LPV and 68.4% of BRCA PV/LPV were detected. By tumor genotyping-only strategy, 96.1% of HBOC PV/LPV and 97.4% of BRCA PV/LPV were detected. Genotyping of tumor first, followed by germline genotyping seems to be a reasonable approach for detection of PV/LPV in breast and/or ovarian cancer susceptibility genes in non-mucinous EOC patients.
Collapse
Affiliation(s)
- Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (V.S.); (V.Š.D.); (P.Š.); (G.K.)
| | - Ana Blatnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (A.B.); (M.K.); (K.S.); (M.B.)
| | - Erik Škof
- Department of Solid Cancer Treatment, Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (E.Š.); (B.G.)
| | - Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (V.S.); (V.Š.D.); (P.Š.); (G.K.)
| | - Mateja Krajc
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (A.B.); (M.K.); (K.S.); (M.B.)
| | - Brigita Gregorič
- Department of Solid Cancer Treatment, Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (E.Š.); (B.G.)
| | - Petra Škerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (V.S.); (V.Š.D.); (P.Š.); (G.K.)
| | - Ksenija Strojnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (A.B.); (M.K.); (K.S.); (M.B.)
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (V.S.); (V.Š.D.); (P.Š.); (G.K.)
| | - Marta Banjac
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (A.B.); (M.K.); (K.S.); (M.B.)
| | - Janez Žgajnar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Maja Ravnik
- Department of Oncology, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (V.S.); (V.Š.D.); (P.Š.); (G.K.)
| |
Collapse
|
8
|
Sánchez-Lorenzo L, Salas-Benito D, Villamayor J, Patiño-García A, González-Martín A. The BRCA Gene in Epithelial Ovarian Cancer. Cancers (Basel) 2022; 14:1235. [PMID: 35267543 PMCID: PMC8909050 DOI: 10.3390/cancers14051235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is still the most lethal gynecological cancer. Germline alterations in breast cancer 1 (gBRCA1) and breast cancer 2 (gBRCA2) genes have been identified in up to 18% of women diagnosed with EOC, and somatic mutations are found in an additional 7%. Testing of BRCA at the primary diagnosis of patients with EOC is recommended due to the implications in the genomic counseling of the patients and their families, as well as for the therapeutic implications. Indeed, the introduction of poly-(ADP ribose) polymerase inhibitors (PARPis) has changed the natural history of patients harboring a mutation in BRCA, and has resulted in a new era in the treatment of patients with ovarian cancer harboring a BRCA mutation.
Collapse
Affiliation(s)
- Luisa Sánchez-Lorenzo
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain; (L.S.-L.); (D.S.-B.); (J.V.); (A.P.-G.)
| | - Diego Salas-Benito
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain; (L.S.-L.); (D.S.-B.); (J.V.); (A.P.-G.)
| | - Julia Villamayor
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain; (L.S.-L.); (D.S.-B.); (J.V.); (A.P.-G.)
| | - Ana Patiño-García
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain; (L.S.-L.); (D.S.-B.); (J.V.); (A.P.-G.)
- Solid Tumor Program (CIMA), Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Antonio González-Martín
- Department of Medical Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain; (L.S.-L.); (D.S.-B.); (J.V.); (A.P.-G.)
- Solid Tumor Program (CIMA), Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
9
|
Feasibility of BRCA1/2 Testing of Formalin-Fixed and Paraffin-Embedded Pancreatic Tumor Samples: A Consecutive Clinical Series. Diagnostics (Basel) 2021; 11:diagnostics11061046. [PMID: 34200245 PMCID: PMC8227758 DOI: 10.3390/diagnostics11061046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, with most patients diagnosed at advanced stages. First-line treatment based on a combined chemotherapy (FOLFIRINOX or gemcitabine plus nab-paclitaxel) provides limited benefits. Olaparib, a PARP inhibitor, has been approved as maintenance for PDAC patients harboring germline BRCA1/2 pathogenic mutations and previously treated with a platinum-based chemotherapy. BRCA1/2 germline testing is recommended, but also somatic mutations could predict responses to PARP inhibitors. Analysis of tumor tissues can detect both germline and somatic mutations and potential resistance alterations. Few data are available about BRCA1/2 testing on pancreatic tumor tissues, which often include limited biological material. We performed BRCA1/2 testing, by an amplicon-based Next Generation Sequencing (NGS) panel, on 37 consecutive PDAC clinical samples: 86.5% of cases were adequate for NGS analysis, with a success rate of 81.2% (median DNA input: 10 nanograms). Three BRCA2 mutations were detected (11.5%). Failed samples were all from tissue macrosections, which had higher fragmented DNA than standard sections, biopsies and fine-needle aspirations, likely due to fixation procedures. BRCA1/2 testing on pancreatic tumor tissues can also be feasible on small biopsies, but more cases must be analyzed to define its role and value in the PDAC diagnostic algorithm.
Collapse
|
10
|
Fountzilas E, Kotoula V, Koliou GA, Liontos M, Papadopoulou K, Giannoulatou E, Papanikolaou A, Tikas I, Chrisafi S, Mauri D, Chatzopoulos K, Fostira F, Pectasides D, Oikonomopoulos G, Aivazi D, Andrikopoulou A, Visvikis A, Aravantinos G, Zagouri F, Fountzilas G. Tumor Genotyping and Homologous Recombination Repair Gene Variants in Patients With Epithelial Ovarian Cancer: Is Pathogenic Enough? Front Oncol 2021; 11:683057. [PMID: 34141624 PMCID: PMC8204021 DOI: 10.3389/fonc.2021.683057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Our hypothesis was that the predictive accuracy of pathogenic variants in genes participating in the homologous recombination repair (HRR) system in patients with epithelial ovarian cancer (EOC) could be improved by considering additional next-generation sequencing (NGS) metrics. NGS genotyping was performed in tumor tissue, retrospectively and prospectively collected from patients with EOC, diagnosed from 8/1998 to 10/2016. Variants were considered clonal when variant allele frequencies corresponded to >25%. The primary endpoint was overall survival (OS). This study included 501 patients with EOC, predominantly with high-grade serous (75.2%) and advanced stage tumors (81.7%); median age was 58 years (22-84). Pathogenic and clonal pathogenic variants in HRR and/or TP53 genes were identified in 72.8% and 66.5% tumors, respectively. With a median follow-up of 123.9 months, the presence of either pathogenic or clonal pathogenic HRR-only variants was associated with longer OS compared to HRR/TP53 co-mutation (HR=0.54; 95% CI, 0.34-0.87, Wald's p=0.012 and HR=0.45; 95% CI, 0.27-0.78, Wald's p=0.004, respectively). However, only the presence of clonal HRR-only variants was independently associated with improved OS (HR=0.55; 95% CI, 0.32-0.94, p=0.030). Variant clonality and co-occuring TP53 variants affect the predictive value of HRR pathogenic variants for platinum agents in patients with EOC. Clinical Trial Registration [ClinicalTrials.gov], identifier [NCT04716374].
Collapse
Affiliation(s)
- Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic of Thessaloniki, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,The University of New South Wales, Kensington, NSW, Australia
| | - Alexios Papanikolaou
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Ioannis Tikas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Davide Mauri
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece.,Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Kyriakos Chatzopoulos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, InRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | | | - Dimitra Aivazi
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Anastasios Visvikis
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| |
Collapse
|
11
|
Kotoula V, Chatzopoulos K, Papadopoulou K, Giannoulatou E, Koliou GA, Karavasilis V, Pazarli E, Pervana S, Kafiri G, Tsoulfas G, Chrisafi S, Sgouramali H, Papakostas P, Pectasides D, Hytiroglou P, Pentheroudakis G, Fountzilas G. Genotyping data of routinely processed matched primary/metastatic tumor samples. Data Brief 2021; 34:106646. [PMID: 33365374 PMCID: PMC7749371 DOI: 10.1016/j.dib.2020.106646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
Genotypic and phenotypic comparisons of tumors in multiple tissue samples from the same patient are important for understanding disease evolution and treatment possibilities. Panel NGS genotyping is currently widely used in this context, whereby NGS variant filtering and final evaluation constitute the basis for meaningful comparisons. Here, we present the genotype data used for genotype / phenotype comparisons between matched primary / metastatic colorectal tumors in the work by Chatzopoulos et al (doi: 10.1016/j.humpath.2020.10.009), as well as the process followed for obtaining these data. We describe key issues while processing routinely formalin-fixed paraffin-embedded (FFPE) tumors for genotyping, NGS application (Ion Torrent), a stringent variant filtering algorithm for genotype analyses in FFPE tissues and particularly in matched tumor samples, and provide the respective datasets. Apart from research, tumor NGS genotyping is currently applied for clinical diagnostic purposes in Oncology. The datasets and method description provided herein (a) are important for comprehending the peculiarities of FFPE tumor genotyping, which is still mostly based on principles of germline DNA genotyping; (b) can be used in pooled analyses, e.g., of primary / metastatic tumors for the investigation of tumor evolution.
Collapse
Affiliation(s)
- Vassiliki Kotoula
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pathology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Chatzopoulos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pathology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Giannoulatou
- Bioinformatics and Systems Medicine Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- The University of New South Wales, Kensington, NSW, Australia
| | | | - Vasilios Karavasilis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Elissavet Pazarli
- Department of Pathology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Stavroula Pervana
- Department of Pathology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Georgia Kafiri
- Department of Pathology, Hippokration Hospital, Athens, Greece
| | - Georgios Tsoulfas
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Helen Sgouramali
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pavlos Papakostas
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Prodromos Hytiroglou
- Department of Pathology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
- Aristotle University of Thessaloniki, Thessaloniki, Greece
- German Oncology Center, Limassol, Cyprus
| |
Collapse
|
12
|
Rivera D, Paudice M, Gismondi V, Anselmi G, Vellone VG, Varesco L. Implementing NGS-based BRCA tumour tissue testing in FFPE ovarian carcinoma specimens: hints from a real-life experience within the framework of expert recommendations. J Clin Pathol 2020; 74:596-603. [PMID: 32895300 DOI: 10.1136/jclinpath-2020-206840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
AIMS Next Generation Sequencing (NGS)-based BRCA tumour tissue testing poses several challenges. As a first step of its implementation within a regional health service network, an in-house validation study was compared with published recommendations. METHODS Epithelial ovarian cancer (EOC) formalin-fixed paraffin-embedded specimens stored in the archives of the eight regional pathology units were selected from a consecutive series of patients with known BRCA germline status. Two expert pathologists evaluated tumour cell content for manual macrodissection. DNA extraction, library preparation and NGS analyses were performed blinded to the germinal status. Parameters used in the study were confronted with guidelines for the validation of NGS-based oncology panels and for BRCA tumour tissue testing. RESULTS NGS analyses were successful in 66 of 67 EOC specimens, with good quality metrics and high reproducibility among different runs. In all, 19 BRCA pathogenic variants were identified: 12 were germline and 7 were somatic. A 100% concordance with blood tests was detected for germline variants. A BRCA1 variant showed a controversial classification. In different areas of two early stage EOCs showing somatic variants, intratumour heterogeneity not relevant for test results (variant allele frequency >5%) was observed. Compared with expert recommendations, main limitations of the study were absence of controls with known somatic BRCA status and exclusion from the validation of BRCA copy number variations (CNV). CONCLUSIONS A close collaboration between pathology and genetics units provides advantages in the implementation of BRCA tumour tissue testing. The development of tools for designing and interpreting complex testing in-house validation could improve process quality.
Collapse
Affiliation(s)
- Daniela Rivera
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Michele Paudice
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Univeristy of Genoa, Genova, Liguria, Italy
| | - Viviana Gismondi
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Giorgia Anselmi
- Anatomic Pathology University Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Valerio Gaetano Vellone
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Univeristy of Genoa, Genova, Liguria, Italy .,Anatomic Pathology University Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | - Liliana Varesco
- Hereditary Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Liguria, Italy
| | | |
Collapse
|