1
|
Fang P, Wang J, Wei Y, Wang X, Yang H, Zhang M. Vagal response during circumferential pulmonary vein isolation decreases the recurrence of atrial fibrillation in the short-term in patients with paroxysmal atrial fibrillation: A prospective, observational study. J Electrocardiol 2021; 69:145-150. [PMID: 34763218 DOI: 10.1016/j.jelectrocard.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/02/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Vagal responses (VRs) are often seen in patients undergoing circumferential pulmonary vein isolation (CPVI). The possible mechanism of VR is that CPVI creates a coincidental modification of the cardiac ganglionated plexi (GP). AIM To investigate whether the presence of VR during CPVI impacts post-ablation recurrence in patients with paroxysmal atrial fibrillation (AF). METHODS A total of 112 consecutive patients with symptomatic paroxysmal AF who underwent CPVI for the first time from October 1, 2017 to April 30, 2019 were prospectively enrolled, of which two were lost the follow-up. Patients were divided into two groups based on whether VRs were experienced during CPVI. Electrophysiological parameters, including atrial effective refractory period (AERP) and mean heart rate (MHR), were measured before and post-ablation. The patients were then followed up for 12 months. RESULTS The 71 patients who had experienced VRs during CPVI were assigned to group B, and the remaing 39 patients who did not experience VR during CPVI were assigned to group A. The MHR (79.6 ± 8.3 vs 70.4 ± 7.8 b/min; p ≤ 0.001) was significantly higher; and the AERP (244 ± 22 vs 215 ± 27 ms; p ≤ 0.001) was prolonged in group B compared to respective pre-ablation values. There were no significant changes in the MHR (69.5 ± 7.9 vs 69.7 ± 8.7 b/min; p = 0.541) and AERP (224 ± 28 vs 225 ± 33 ms; p = 0.542) in group A. During the first four months of follow-up after ablation, the MHR gradually slowed down to pre-procedural levels in group B. The recurrence of AF (6/71 vs 7/39; p = 0.023) significantly decreased in group B relative to group A during the first 6 months after ablation, but there was no significant difference (14/71 vs 9/39; p = 0.598) at the end of the 12-month follow-up period. CONCLUSION Patients with paroxysmal AF who develop VRs during CPVI might have a decreased recurrence of AF and accelerated MHR in the short-term.
Collapse
Affiliation(s)
- Ping Fang
- Department of Cardiology, The First Affifiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui 241001, China.
| | - Jinfeng Wang
- Department of Cardiology, The First Affifiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Youquan Wei
- Department of Cardiology, The First Affifiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xianghai Wang
- Department of Cardiology, The First Affifiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Hao Yang
- Department of Cardiology, The First Affifiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Meijun Zhang
- Department of Intensive Care Medicine, The First Affifiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, Anhui 241001, China.
| |
Collapse
|
2
|
Aksu T, Gopinathannair R, Gupta D, Pauza DH. Intrinsic cardiac autonomic nervous system: What do clinical electrophysiologists need to know about the "heart brain"? J Cardiovasc Electrophysiol 2021; 32:1737-1747. [PMID: 33928710 DOI: 10.1111/jce.15058] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
It is increasingly recognized that the autonomic nervous system (ANS) is a major contributor in many cardiac arrhythmias. Cardiac ANS can be divided into extrinsic and intrinsic parts according to the course of nerve fibers and localization of ganglia and neuron bodies. Although the role of the extrinsic part has historically gained more attention, the intrinsic cardiac ANS may affect cardiac function independently as well as influence the effects of the extrinsic nerves. Catheter-based modulation of the intrinsic cardiac ANS is emerging as a novel therapy for the management of patients with brady and tachyarrhythmias resulting from hyperactive vagal activation. However, the distribution of intrinsic cardiac nerve plexus in the human heart and the functional properties of intrinsic cardiac neural elements remain insufficiently understood. The present review aims to bring the clinical and anatomical elements of the immune effector cell-associated neurotoxicity together, by reviewing neuroanatomical terminologies and physiological functions, to guide the clinical electrophysiologist in the catheter lab and to serve as a reference for further research.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Rakesh Gopinathannair
- Departments of Electrophysiology, Kansas City Heart Rhythm Institute and Research Foundation, Kansas City, Missouri, USA
| | - Dhiraj Gupta
- Department of Electrophysiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Dainius H Pauza
- Department of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
3
|
Aksu T, Yalin K, Bozyel S, Gopinathannair R, Gupta D. The anatomical basis behind the neuromodulation effects associated with pulmonary vein isolation. J Cardiovasc Electrophysiol 2021; 32:1733-1736. [PMID: 33844395 DOI: 10.1111/jce.15038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The anatomical basis underlying the neuromodulation effects seen with pulmonary vein (PV) isolation (PVI) is not fully understood. Left atrial (LA) electro-anatomical maps of 38 patients who underwent catheter cardioneuroablation for vagally mediated bradycarrhythmias were studied. During the procedure, LA ganglionic plexi (GPs) were systematically identified and ablated. Design PVI lines were created on these maps by a blinded observer, and the degree of overlap between four GPs and individual PVs was assessed. Here, 1.7 ± 7 (35.5 ± 17.0%) of the total 31.6 ± 10 GP ablation sites per patient were found to overlap with the design PVI lines. The overlap was higher for the right-sided GPs, p < .001. The degree of GP-PV overlap varied: 1 PV in 5 (13.2%) patients, 2 PVs in 15 (39.2%), 3 PVs in 16 (42.1%), and all 4 PVs in 2 (5.3%). No patient had zero GP-PV overlap. A vagal response was most commonly observed during ablation at the left superior GP (89.5%), while a sympathetic response was observed most often during the right superior GP ablation (97.4%). Some degree of GP-PV antral overlap is the norm, and this is more pronounced for the right-sided PVs. There is significant individual variability in the degree of overlap which may explain why neuromodulation effects are not seen universally following PVI.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Kivanc Yalin
- Department of Cardiology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serdar Bozyel
- Department of Cardiology, Kocaeli Derince Training and Research Hospital, University of Health Sciences, Kocaeli, Turkey
| | - Rakesh Gopinathannair
- Department of Cardiology, Kansas City Heart Rhythm Institute and Research Foundation, Overland Park, Kansas, USA
| | - Dhiraj Gupta
- Department of Cardiology, Liverpool Center for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
4
|
Dahlqvist JA, Wiklund U, Karlsson M, Hanséus K, Strömvall Larsson E, Johansson Ramgren J, Berggren H, Rydberg A. Changes in Heart Rate and Heart Rate Variability During Surgical Stages to Completed Fontan Circulation. Pediatr Cardiol 2021; 42:1162-1169. [PMID: 33837840 PMCID: PMC8192394 DOI: 10.1007/s00246-021-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Arrhythmia is related to heart rate variability (HRV), which reflects the autonomic nervous regulation of the heart. We hypothesized that autonomic nervous ganglia, located at the junction of the superior vena cava's entrance to the heart, may be affected during the bidirectional Glenn procedure (BDG), resulting in reduced HRV. We aimed to investigate changes in heart rate and HRV in a cohort of children with univentricular heart defects, undergoing stepwise surgery towards total cavopulmonary connection (TCPC), and compare these results with healthy controls. Twenty four hours Holter-ECG recordings were obtained before BDG (n = 47), after BDG (n = 47), and after total cavopulmonary connection (TCPC) (n = 45) in patients and in 38 healthy controls. HRV was analyzed by spectral and Poincaré methods. Age-related z scores were calculated and compared using linear mixed effects modeling. Total HRV was significantly lower in patients before BDG when compared to healthy controls. The mean heart rate was significantly reduced in patients after BDG compared to before BDG. Compared to healthy controls, patients operated with BDG had significantly reduced heart rate and reduced total HRV. Patients with TCPC showed reduced heart rate and HRV compared with healthy controls. In patients after TCPC, total HRV was decreased compared to before TCPC. Heart rate was reduced after BDG procedure, and further reductions of HRV were seen post-TCPC. Our results indicate that autonomic regulation of cardiac rhythm is affected both after BDG and again after TCPC. This may be reflected as, and contribute to, postoperative arrhythmic events.
Collapse
Affiliation(s)
| | - Urban Wiklund
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Marcus Karlsson
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Katarina Hanséus
- grid.411843.b0000 0004 0623 9987Department of Clinical Sciences Lund, Children Heart Centre, Skåne University Hospital Lund, Lund, Sweden
| | - Eva Strömvall Larsson
- grid.8761.80000 0000 9919 9582Department of Cardiology, Institute of Clinical Sciences, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Jens Johansson Ramgren
- grid.411843.b0000 0004 0623 9987Department of Pediatric Cardiac Surgery, Children’s Heart Center, Skåne University Hospital Lund, Lund, Sweden
| | - Håkan Berggren
- grid.415579.b0000 0004 0622 1824Department of Pediatric Cardiac Surgery, Children’s Heart Center, The Queen Silvia Children’s Hospital, Göteborg, Sweden
| | - Annika Rydberg
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences, Pediatrics, Umeå University, 90185 Umeå, Sweden
| |
Collapse
|
5
|
Pauziene N, Rysevaite-Kyguoliene K, Alaburda P, Pauza AG, Skukauskaite M, Masaityte A, Laucaityte G, Saburkina I, Inokaitis H, Plisiene J, Pauza DH. Neuroanatomy of the Pig Cardiac Ventricles. A Stereomicroscopic, Confocal and Electron Microscope Study. Anat Rec (Hoboken) 2017; 300:1756-1780. [DOI: 10.1002/ar.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Paulius Alaburda
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Audrys G. Pauza
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Monika Skukauskaite
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Aiste Masaityte
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Goda Laucaityte
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Inga Saburkina
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Jurgita Plisiene
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Dainius H. Pauza
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
6
|
Kawashima T, Sato F. Anatomical visualization of neural course and distribution of anterior ascending aortic plexus. Heart Vessels 2017; 32:1262-1270. [PMID: 28516212 DOI: 10.1007/s00380-017-0993-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to document the detailed anatomy of neural course and distribution on the anterior ascending aorta, to identify the high and low density areas of the anterior ascending aortic plexus for further understandings in cardiovascular surgery. The embalmed hearts of 42 elderly individuals were submacroscopically and microscopically examined, after excluding any that were macroscopically abnormal. With its origins in the anterior ascending aortic plexus, the right coronary plexus substantially innervated the right coronary artery, the right atrium and ventricle, and the sinus node. The intensive neural area extending from 10 mm lateral to the interatrial groove below the pericardial reflection as far as the right coronary artery opening contained almost all the right coronary plexus in 61.3% of patients, and more than 40.9% of the total nerve volume of the anterior ascending aortic plexus. Our findings suggest that the most superior and lateral area on the ascending aorta show the lowest neural density of right coronary component in the anterior ascending aortic plexus and the high density areas are invisible in right lateral field of view as seen in the right trans-axillary MICS approach.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Department of Anatomy, School of Medicine, Toho University, 5-21-16 Omori-Nish, Ota-ku, Tokyo, 143-8540, Japan.
| | - Fumi Sato
- Department of Anatomy, School of Medicine, Toho University, 5-21-16 Omori-Nish, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
7
|
Saburkina I, Gukauskiene L, Rysevaite K, Brack KE, Pauza AG, Pauziene N, Pauza DH. Morphological pattern of intrinsic nerve plexus distributed on the rabbit heart and interatrial septum. J Anat 2014; 224:583-93. [PMID: 24527844 DOI: 10.1111/joa.12166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 12/14/2022] Open
Abstract
Although the rabbit is routinely used as the animal model of choice to investigate cardiac electrophysiology, the neuroanatomy of the rabbit heart is not well documented. The aim of this study was to examine the topography of the intrinsic nerve plexus located on the rabbit heart surface and interatrial septum stained histochemically for acetylcholinesterase using pressure-distended whole hearts and whole-mount preparations from 33 Californian rabbits. Mediastinal cardiac nerves entered the venous part of the heart along the root of the right cranial vein (superior caval vein) and at the bifurcation of the pulmonary trunk. The accessing nerves of the venous part of the heart passed into the nerve plexus of heart hilum at the heart base. Nerves approaching the heart extended epicardially and innervated the atria, interatrial septum and ventricles by five nerve subplexuses, i.e. left and middle dorsal, dorsal right atrial, ventral right and left atrial subplexuses. Numerous nerves accessed the arterial part of the arterial part of the heart hilum between the aorta and pulmonary trunk, and distributed onto ventricles by the left and right coronary subplexuses. Clusters of intrinsic cardiac neurons were concentrated at the heart base at the roots of pulmonary veins with some positioned on the infundibulum. The mean number of intrinsic neurons in the rabbit heart is not significantly affected by aging: 2200 ± 262 (range 1517-2788; aged) vs. 2118 ± 108 (range 1513-2822; juvenile). In conclusion, despite anatomic differences in the distribution of intrinsic cardiac neurons and the presence of well-developed nerve plexus within the heart hilum, the topography of all seven subplexuses of the intrinsic nerve plexus in rabbit heart corresponds rather well to other mammalian species, including humans.
Collapse
Affiliation(s)
- Inga Saburkina
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
8
|
Petraitiene V, Pauza DH, Benetis R. Distribution of adrenergic and cholinergic nerve fibres within intrinsic nerves at the level of the human heart hilum. Eur J Cardiothorac Surg 2013; 45:1097-105. [PMID: 24335471 DOI: 10.1093/ejcts/ezt575] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The disbalance between adrenergic (sympathetic) and cholinergic (parasympathetic) cardiac inputs facilitates cardiac arrhythmias, including the lethal ones. In spite of the fact that the morphological pattern of the epicardiac ganglionated subplexuses (ENsubP) has been previously described in detail, the distribution of functionally distinct axons in human intrinsic nerves was not investigated thus far. Therefore, the aim of the present study was to quantitatively evaluate the distribution of tyrosine hydroxylase (TH)- and choline acetyltransferase (ChAT)-positive axons within intrinsic nerves at the level of the human heart hilum (HH), since they are of pivotal importance for determining proper treatment options for different arrhythmias. METHODS Tissue samples containing the intrinsic nerves from seven epicardiac subplexuses were obtained from nine human hearts without cardiac pathology and processed for immunofluorescent detection of TH and ChAT. The nerve area was measured and the numbers of axons were counted using microphotographs of nerve profiles. The densities of fibres were extrapolated and compared between subplexuses. RESULTS ChAT-immunoreactive (IR) fibres were evidently predominant (>56%) in nerves of dorsal (DRA) and ventral right atrial (VRA) ENsubP. Within both left (LC) and right coronary ENsubP, the most abundant (70.9 and 83.0%, respectively) were TH-IR axons. Despite subplexal dependence, ChAT-IR fibres prevailed in comparatively thinner nerves, whereas TH-IR fibres in thicker ones. Morphometry showed that at the level of HH: (i) LC subplexal nerves were found to be the thickest (25 737 ± 4131 μm(2)) ones, whereas the thinnest (2604 ± 213 μm(2)) nerves concentrated in DRA ENsubP; (ii) the density of ChAT-IR axons was highest (6.8 ± 0.6/100 μm(2)) in the ventral left atrial nerves and lowest (3.2 ± 0.1/100 μm(2)) in left dorsal ENsubP and (iii) the density of TH-IR fibres was highest (15.9 ± 2.1/100 μm(2)) in LC subplexal nerves and lowest (4.4 ± 0.3/100 μm(2)) in VRA nerves. CONCLUSIONS (i) The principal intrinsic adrenergic neural pathways in the human heart proceed via both coronary ENsubP that supply cardiac ventricles and (ii) the majority of cholinergic nerve fibres access the human heart through DRA and VRA ENsubP and extend towards the right atrium, including the region of the sinuatrial node.
Collapse
Affiliation(s)
- Viktorija Petraitiene
- Institute of Anatomy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Institute of Anatomy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Benetis
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
9
|
Zarzoso M, Rysevaite K, Milstein ML, Calvo CJ, Kean AC, Atienza F, Pauza DH, Jalife J, Noujaim SF. Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovasc Res 2013; 99:566-75. [PMID: 23559611 DOI: 10.1093/cvr/cvt081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Pulmonary vein ganglia (PVG) are targets for atrial fibrillation ablation. However, the functional relevance of PVG to the normal heart rhythm remains unclear. Our aim was to investigate whether PVG can modulate sinoatrial node (SAN) function. METHODS AND RESULTS Forty-nine C57BL and seven Connexin40+/EGFP mice were studied. We used tyrosine-hydroxylase (TH) and choline-acetyltransferase immunofluorescence labelling to characterize adrenergic and cholinergic neural elements. PVG projected postganglionic nerves to the SAN, which entered the SAN as an extensive, mesh-like neural network. PVG neurones were adrenergic, cholinergic, and biphenotypic. Histochemical characterization of two human embryonic hearts showed similarities between mouse and human neuroanatomy: direct neural communications between PVG and SAN. In Langendorff perfused mouse hearts, PVG were stimulated using 200-2000 ms trains of pulses (300 μs, 400 µA, 200 Hz). PVG stimulation caused an initial heart rate (HR) slowing (36 ± 9%) followed by acceleration. PVG stimulation in the presence of propranolol caused HR slowing (43 ± 13%) that was sustained over 20 beats. PVG stimulation with atropine progressively increased HR. Time-course effects were enhanced with 1000 and 2000 ms trains (P < 0.05 vs. 200 ms). In optical mapping, PVG stimulation shifted the origin of SAN discharges. In five paroxysmal AF patients undergoing pulmonary vein ablation, application of radiofrequency energy to the PVG area during sinus rhythm produced a decrease in HR similar to that observed in isolated mouse hearts. CONCLUSION PVG have functional and anatomical biphenotypic characteristics. They can have significant effects on the electrophysiological control of the SAN.
Collapse
Affiliation(s)
- Manuel Zarzoso
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pauza DH, Saburkina I, Rysevaite K, Inokaitis H, Jokubauskas M, Jalife J, Pauziene N. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci 2013; 176:32-47. [PMID: 23403121 DOI: 10.1016/j.autneu.2013.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The mouse heart is a popular model to study the function and autonomic control of the specialized cardiac conduction system (CCS). However, the precise identity and anatomical distribution of the intrinsic cardiac nerves that modulate the function of the mouse CCS have not been adequately studied. We aimed at determining the organization and distribution of the intrinsic cardiac nerves that supply the CCS of the mouse. In whole mouse heart preparations, intrinsic neural structures were revealed by histochemical staining for acetylcholinesterase (AChE). Adrenergic, cholinergic and peptidergic neural components were identified, respectively, by immunohistochemical labeling for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), calcitonin gene related peptide (CGRP), substance P (SP), and protein gene product 9.5 (PGP 9.5). Myocytes of the CCS were identified by immunolabeling of hyperpolarization activated cyclic nucleotide-gated potassium channel 4 (HCN4). In addition, the presence of CCS myocytes in atypical locations was verified using fluorescent immunohistochemistry performed on routine paraffin sections. The results demonstrate that four microscopic epicardial nerves orientated toward the sinuatrial nodal (SAN) region derive from both the dorsal right atrial and right ventral nerve subplexuses. The atrioventricular nodal (AVN) region is typically supplied by a single intrinsic nerve derived from the left dorsal nerve subplexus at the posterior interatrial groove. SAN myocytes positive for HCN4 were widely distributed both on the medial, anterior, lateral and even posterior sides of the root of the right cranial (superior caval) vein. The distribution of HCN4-positive myocytes in the AVN region was also wider than previously considered. HCN4-positive cells and thin slivers of the AVN extended to the roots of the ascending aorta, posteriorly to the orifice of the coronary sinus, and even along both atrioventricular rings. Notwithstanding the fact that cholinergic nerve fibers and axons clearly predominate in the mouse CCS, adrenergic nerve fibers and axons are abundant therein as well. Altogether, these results provide new insight into the anatomical basis of the neural control of the mouse CCS.
Collapse
Affiliation(s)
- Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kawashima T, Sato F. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees. Anat Rec (Hoboken) 2011; 295:438-53. [PMID: 22190256 DOI: 10.1002/ar.21530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/17/2011] [Indexed: 12/16/2022]
Abstract
To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan.
| | | |
Collapse
|
12
|
de Boer TP, Camelliti P, Ravens U, Kohl P. Myocardial tissue slices: organotypic pseudo-2D models for cardiac research & development. Future Cardiol 2010; 5:425-30. [PMID: 19715406 DOI: 10.2217/fca.09.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Saburkina I, Rysevaite K, Pauziene N, Mischke K, Schauerte P, Jalife J, Pauza DH. Epicardial neural ganglionated plexus of ovine heart: anatomic basis for experimental cardiac electrophysiology and nerve protective cardiac surgery. Heart Rhythm 2010; 7:942-50. [PMID: 20197118 DOI: 10.1016/j.hrthm.2010.02.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Sheep are routinely used in experimental cardiac electrophysiology and surgery. OBJECTIVE The purpose of this study was to (1) ascertain the topography and architecture of the ovine epicardial neural plexus (ENP), (2) determine the relationships of ENP with vagal and sympathetic cardiac nerves and ganglia, and (3) evaluate gross anatomic differences and similarities of ENP in humans, sheep, and other species. METHODS Ovine ENP and extrinsic sympathetic and vagal nerves were stained histochemically for acetylcholinesterase in whole heart and/or thorax-dissected preparations from 23 newborn lambs, with subsequent examination by stereomicroscope. RESULTS Intrinsic cardiac nerves extend from the venous part of the ovine heart hilum along the roots of the cranial (superior) caval and left azygos veins to both atria and ventricles via five epicardial routes: dorsal right atrial, middle dorsal, left dorsal, right ventral, and ventral left atrial nerve subplexuses. Intrinsic nerves proceeding from the arterial part of the heart hilum along the roots of the aorta and pulmonary trunk extend exclusively into the ventricles as the right and left coronary subplexuses. The dorsal right atrial, right ventral, and middle dorsal subplexuses receive the main extrinsic neural input from the right cervicothoracic and right thoracic sympathetic T(2) and T(3) ganglia as well as from the right vagal nerve. The left dorsal is supplied by sizeable extrinsic nerves from the left thoracic T(4)-T(6) sympathetic ganglia and the left vagal nerve. Sheep hearts contained an average of 769 +/- 52 epicardial ganglia. Cumulative areas of epicardial ganglia on the root of the cranial vena cava and on the wall of the coronary sinus were the largest of all regions (P <.05). CONCLUSION Despite substantial interindividual variability in the morphology of ovine ENP, right-sided epicardial neural subplexuses supplying the sinoatrial and atrioventricular nodes are mostly concentrated at a fat pad between the right pulmonary veins and the cranial vena cava. This finding is in sharp contrast with a solely left lateral neural input to the human atrioventricular node, which extends mainly from the left dorsal and middle dorsal subplexuses. The abundance of epicardial ganglia distributed widely along the ovine ventricular nerves over respectable distances below the coronary groove implies a distinctive neural control of the ventricles in human and sheep hearts.
Collapse
Affiliation(s)
- Inga Saburkina
- Institute of Anatomy, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
14
|
Saburkina I, Pauziene N, Pauza DH. Prenatal Development of the Human Epicardiac Ganglia. Anat Histol Embryol 2009; 38:194-9. [DOI: 10.1111/j.1439-0264.2008.00919.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|
16
|
Vaitkevicius R, Saburkina I, Rysevaite K, Vaitkeviciene I, Pauziene N, Zaliunas R, Schauerte P, Jalife J, Pauza DH. Nerve supply of the human pulmonary veins: an anatomical study. Heart Rhythm 2008; 6:221-8. [PMID: 19187915 DOI: 10.1016/j.hrthm.2008.10.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Atrial ectopic discharges originating in the pulmonary veins (PVs) are known to initiate atrial fibrillation (AF), which may be terminated by catheter-based PV isolation. Because a functional relationship exists between cardiac autonomic effects and PVs in arrhythmogenesis, it has been suggested that discharges of the nerves that proceed to the PVs and interconnect with intrinsic ganglionated nerve plexuses are potential triggers of AF in man. OBJECTIVE This study sought to determine the characteristics and distribution of neural routes by which autonomic nerves supply the human PVs. METHODS We examined the intrinsic neural structures of 35 intact (nonsectioned) left atrial (LA)-PV complexes stained transmurally for acetylcholinesterase using a stereomicroscope. RESULTS The epicardial ganglionated nerves pass onto the extrapulmonary segments of the human PVs from the middle, left dorsal, and dorsal right atrial subplexuses. The left and right inferior PVs involved a lesser number of ganglia than the left and right superior PVs. Abundant extensions of epicardial nerves penetrate transmurally the PV walls and form a patchy neural network beneath the endothelium of PVs. The subendothelial neural meshwork with numerous free nerve endings, which appeared to be typical sensory compact nerve endings, was mostly situated at the roots of the 4 PVs. No ganglia were identified beneath the endothelium of the human PVs. CONCLUSION The richest areas containing epicardial ganglia, from which intrinsic nerves extend to the human PVs, are concentrated at the inferior surface of both the inferior and left superior PVs. Therefore, these locations might be considered as potential targets for focal pulmonary vein ablation in catheter-based therapy of AF.
Collapse
|
17
|
Innervation of pulmonary veins: Morphologic pattern and pathways of nerves in the human fetus. Ann Anat 2008; 190:158-66. [DOI: 10.1016/j.aanat.2007.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 09/04/2007] [Accepted: 09/11/2007] [Indexed: 11/18/2022]
|