1
|
Alwashmi K, Rowe F, Meyer G. Multimodal MRI analysis of microstructural and functional connectivity brain changes following systematic audio-visual training in a virtual environment. Neuroimage 2025; 305:120983. [PMID: 39732221 DOI: 10.1016/j.neuroimage.2024.120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
Recent work has shown rapid microstructural brain changes in response to learning new tasks. These cognitive tasks tend to draw on multiple brain regions connected by white matter (WM) tracts. Therefore, behavioural performance change is likely to be the result of microstructural, functional activation, and connectivity changes in extended neural networks. Here we show for the first time that learning-induced microstructural change in WM tracts, quantified with diffusion tensor and kurtosis imaging (DTI, DKI) is linked to functional connectivity changes in brain areas that use these tracts to communicate. Twenty healthy participants engaged in a month of virtual reality (VR) systematic audiovisual (AV) training. DTI analysis using repeated-measures ANOVA unveiled a decrease in mean diffusivity (MD) in the SLF II, alongside a significant increase in fractional anisotropy (FA) in optic radiations post-training, persisting in the follow-up (FU) assessment (post: MD t(76) = 6.13, p < 0.001, FA t(76) = 3.68, p < 0.01, FU: MD t(76) = 4.51, p < 0.001, FA t(76) = 2.989, p < 0.05). The MD reduction across participants was significantly correlated with the observed behavioural performance gains. A functional connectivity (FC) analysis showed significantly enhanced functional activity correlation between primary visual and auditory cortices post-training, which was evident by the DKI microstructural changes found within these two regions as well as in the sagittal stratum including WM tracts connecting occipital and temporal lobes (mean kurtosis (MK): cuneus t(19)=2.3 p < 0.05, transverse temporal t(19)=2.6 p < 0.05, radial kurtosis (RK): sagittal stratum t(19)=2.3 p < 0.05). DTI and DKI show complementary data, both of which are consistent with the task-relevant brain networks. The results demonstrate the utility of multimodal imaging analysis to provide complementary evidence for brain changes at the level of networks. In summary, our study shows the complex relationship between microstructural adaptations and functional connectivity, unveiling the potential of multisensory integration within immersive VR training. These findings have implications for learning and rehabilitation strategies, facilitating more effective interventions within virtual environments.
Collapse
Affiliation(s)
- Kholoud Alwashmi
- Faculty of Health and Life Sciences, University of Liverpool, United Kingdom; Department of Radiology, Princess Nourah bint Abdulrahman University, Saudi Arabia.
| | - Fiona Rowe
- IDEAS, University of Liverpool, United Kingdom.
| | - Georg Meyer
- Institute of Population Health, University of Liverpool, United Kingdom; Hanse Wissenschaftskolleg, Delmenhorst, Germany.
| |
Collapse
|
2
|
Rogojin A, Gorbet DJ, Sergio LE. Sex differences in the neural underpinnings of unimanual and bimanual control in adults. Exp Brain Res 2023; 241:793-806. [PMID: 36738359 DOI: 10.1007/s00221-023-06561-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
While many of the movements we make throughout our day involve just one upper limb, most daily movements require a certain degree of coordination between both upper limbs. Historically, sex differences in eye-hand coordination have been observed. As well, there are demonstrated sex-specific differences in hemisphere symmetry, interhemispheric connectivity, and motor cortex organization. While it has been suggested that these anatomical differences may underlie sex-related differences in performance, sex differences in the functional neural correlate underlying bimanual performance have not been explicitly investigated. In the current study we tested the hypothesis that the functional connectivity underlying bimanual movement control differed depending on the sex of an individual. Participants underwent MRI scanning to acquire anatomical and functional brain images. During the functional runs, participants performed unimanual and bimanual coordination tasks using two button boxes. The tasks included pressing the buttons in time to an auditory cue with either their left or their right hand individually (unimanual), or with both hands simultaneously (bimanual). The bimanual task was further divided into either an in-phase (mirror/symmetrical) or anti-phase (parallel/asymmetrical) condition. Participants were provided with extensive training to ensure task comprehension, and performance error rates were found to be equivalent between men and women. A generalized psychophysiological interaction (gPPI) analysis was implemented to examine how functional connectivity in each condition was modulated by sex. In support of our hypothesis, women and men demonstrated differences in the neural correlates underlying unimanual and bimanual movements. In line with previous literature, functional connectivity patterns showed sex-related differences for right- vs left-hand movements. Sex-specific functional connectivity during bimanual movements was not a sum of the functional connectivity underlying right- and left-hand unimanual movements. Further, women generally showed greater interhemispheric functional connectivity across all conditions compared to men and had greater connectivity between task-related cortical areas, while men had greater connectivity involving the cerebellum. Sex differences in brain connectivity were associated with both unimanual and bimanual movement control. Not only do these findings provide novel insight into the fundamentals of how the brain controls bimanual movements in both women and men, they also present potential clinical implications on how bimanual movement training used in rehabilitation can best be tailored to the needs of individuals.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada.
| |
Collapse
|
3
|
Gooijers J, De Luca A, Zivari Adab H, Leemans A, Roebroeck A, Swinnen SP. Indices of callosal axonal density and radius from diffusion MRI relate to upper and lower limb motor performance. Neuroimage 2021; 241:118433. [PMID: 34324975 DOI: 10.1016/j.neuroimage.2021.118433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the relationship between human brain structure and functional outcome is of critical importance in systems neuroscience. Diffusion MRI (dMRI) studies show that fractional anisotropy (FA) is predictive of motor control, underscoring the importance of white matter (WM). However, as FA is a surrogate marker of WM, we aim to shed new light on the structural underpinnings of this relationship by applying a multi-compartment microstructure model providing axonal density/radius indices. Sixteen young adults (7 males / 9 females), performed a hand/foot tapping task and a Multi Limb Reaction Time task. Furthermore, diffusion (STEAM &HARDI) and fMRI (localizer hand/foot activations) data were obtained. Sphere ROIs were placed on activation clusters with highest t value to guide interhemispheric WM tractography. Axonal radius/density indices of callosal parts intersecting with tractography were calculated from STEAM, using the diffusion-time dependent AxCaliber model, and correlated with behavior. Results indicated a possible association between larger apparent axonal radii of callosal motor fibers of the hand and higher tapping scores of both hands, and faster selection-related processing (normalized reaction) times (RTs) on diagonal limb combinations. Additionally, a trend was present for faster selection-related processing (normalized reaction) times for lower limbs being related with higher axonal density of callosal foot motor fibers, and for higher FA values of callosal motor fibers in general being related with better tapping and faster selection-related processing (normalized reaction) times. Whereas FA is sensitive in demonstrating associations with motor behavior, axon radius/density (i.e., fiber geometry) measures are promising to explain the physiological source behind the observed FA changes, contributing to deeper insights into brain-behavior interactions.
Collapse
Affiliation(s)
- J Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven (3000), Belgium; LBI-KU Leuven Brain Institute, Leuven (3000), Belgium.
| | - A De Luca
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands; Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - H Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven (3000), Belgium; LBI-KU Leuven Brain Institute, Leuven (3000), Belgium
| | - A Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, Netherlands
| | - S P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven (3000), Belgium; LBI-KU Leuven Brain Institute, Leuven (3000), Belgium
| |
Collapse
|
4
|
Thaler C, Kyselyova AA, Faizy TD, Nawka MT, Jespersen S, Hansen B, Stellmann JP, Heesen C, Stürner KH, Stark M, Fiehler J, Bester M, Gellißen S. Heterogeneity of multiple sclerosis lesions in fast diffusional kurtosis imaging. PLoS One 2021; 16:e0245844. [PMID: 33539364 PMCID: PMC7861404 DOI: 10.1371/journal.pone.0245844] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Mean kurtosis (MK), one of the parameters derived from diffusion kurtosis imaging (DKI), has shown increased sensitivity to tissue microstructure damage in several neurological disorders. Methods Thirty-seven patients with relapsing-remitting MS and eleven healthy controls (HC) received brain imaging on a 3T MR scanner, including a fast DKI sequence. MK and mean diffusivity (MD) were measured in the white matter of HC, normal-appearing white matter (NAWM) of MS patients, contrast-enhancing lesions (CE-L), FLAIR lesions (FLAIR-L) and black holes (BH). Results Overall 1529 lesions were analyzed, including 30 CE-L, 832 FLAIR-L and 667 BH. Highest MK values were obtained in the white matter of HC (0.814 ± 0.129), followed by NAWM (0.724 ± 0.137), CE-L (0.619 ± 0.096), FLAIR-L (0.565 ± 0.123) and BH (0.549 ± 0.12). Lowest MD values were obtained in the white matter of HC (0.747 ± 0.068 10−3mm2/sec), followed by NAWM (0.808 ± 0.163 10−3mm2/sec), CE-L (0.853 ± 0.211 10−3mm2/sec), BH (0.957 ± 0.304 10−3mm2/sec) and FLAIR-L (0.976 ± 0.35 10−3mm2/sec). While MK differed significantly between CE-L and non-enhancing lesions, MD did not. Conclusion MK adds predictive value to differentiate between MS lesions and might provide further information about diffuse white matter injury and lesion microstructure.
Collapse
Affiliation(s)
- Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Anna A. Kyselyova
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias D. Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie T. Nawka
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sune Jespersen
- Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jan-Patrick Stellmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hospital de la Timone, CEMEREM, Marseille, France
- Aix Marseille University, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Christoph Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klarissa H. Stürner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Neuroimmunology and Clinical MS Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maria Stark
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxim Bester
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Corpus callosum microstructure is associated with motor function in preschool children. Neuroimage 2018; 183:828-835. [DOI: 10.1016/j.neuroimage.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/29/2018] [Accepted: 09/02/2018] [Indexed: 12/21/2022] Open
|
6
|
Rudisch J, Butler J, Izadi H, Birtles D, Green D. Developmental Characteristics of Disparate Bimanual Movement Skills in Typically Developing Children. J Mot Behav 2017. [PMID: 28632103 DOI: 10.1080/00222895.2016.1271302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mastery of many tasks in daily life requires role differentiated bimanual hand use with high spatiotemporal cooperation and minimal interference. The authors investigated developmental changes in the performance of a disparate bimanual movement task requiring sequenced movements. Age groups were attributed to changes in CNS structures critical for bimanual control such as the corpus callosum (CC) and the prefrontal cortex; young children (5-6 years old), older children (7-9 years old), and adolescents (10-16 years old). Results show qualitative changes in spatiotemporal sequencing between the young and older children which typically marks a phase of distinct reduction of growth and myelination of the CC. Results show qualitative changes in spatiotemporal sequencing between the young and older children, which coincides with distinct changes in the growth rate and myelination of the CC. The results further support the hypothesis that CC maturation plays an important role in the development of bimanual skills.
Collapse
Affiliation(s)
- Julian Rudisch
- a Department of Sport and Health Sciences , Faculty of Health and Life Sciences, Oxford Brookes University , Oxford , United Kingdom
| | - Jenny Butler
- a Department of Sport and Health Sciences , Faculty of Health and Life Sciences, Oxford Brookes University , Oxford , United Kingdom
| | - Hooshang Izadi
- b Department of Mechanical Engineering and Mathematical Sciences , Faculty of Technology Design and Environment, Oxford Brookes University , Oxford , United Kingdom
| | - Deirdre Birtles
- c School of Psychology, University of East London , London , United Kingdom
| | - Dido Green
- a Department of Sport and Health Sciences , Faculty of Health and Life Sciences, Oxford Brookes University , Oxford , United Kingdom
| |
Collapse
|
7
|
Maes C, Gooijers J, Orban de Xivry JJ, Swinnen SP, Boisgontier MP. Two hands, one brain, and aging. Neurosci Biobehav Rev 2017; 75:234-256. [PMID: 28188888 DOI: 10.1016/j.neubiorev.2017.01.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/18/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults.
Collapse
Affiliation(s)
- Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Matthieu P Boisgontier
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium.
| |
Collapse
|
8
|
Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control. J Neurosci 2016; 36:1808-22. [PMID: 26865607 DOI: 10.1523/jneurosci.3355-15.2016] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Changes in both brain structure and neurophysiological function regulating homotopic as well as heterotopic interhemispheric interactions (IHIs) are assumed to be responsible for the bimanual performance deficits in older adults. However, how the structural and functional networks regulating bimanual performance decline in older adults, as well as the interplay between brain structure and function remain largely unclear. Using a dual-site transcranial magnetic stimulation paradigm, we examined the age-related changes in the interhemispheric effects from the dorsolateral prefrontal cortex and dorsal premotor cortex onto the contralateral primary motor cortex (M1) during the preparation of a complex bimanual coordination task in human. Structural properties of these interactions were assessed with diffusion-based fiber tractography. Compared with young adults, older adults showed performance declines in the more difficult bimanual conditions, less optimal brain white matter (WM) microstructure, and a decreased ability to regulate the interaction between dorsolateral prefrontal cortex and M1. Importantly, we found that WM microstructure, neurophysiological function, and bimanual performance were interrelated in older adults, whereas only the task-related changes in IHI predicted bimanual performance in young adults. These results reflect unique interactions between structure and function in the aging brain, such that declines in WM microstructural organization likely lead to dysfunctional regulation of IHI, ultimately accounting for bimanual performance deficits. SIGNIFICANCE STATEMENT The structural and functional changes in the aging brain are associated with a decline in movement control, compromising functional independence. We used MRI and noninvasive brain stimulation techniques to investigate white matter microstructural organization and neurophysiological function in the aging brain, in relation to bimanual movement control. We found that less optimal brain microstructural organization and task-related modulations in neurophysiological function resulted in poor bimanual performance in older adults. By interrelating brain structure, neurophysiological function, and behavior, the current study provides a comprehensive picture of biological alterations in the aging brain that underlie declines in bimanual performance.
Collapse
|
9
|
Wu Y, Kim J, Chan ST, Zhou IY, Guo Y, Igarashi T, Zheng H, Guo G, Sun PZ. Comparison of image sensitivity between conventional tensor-based and fast diffusion kurtosis imaging protocols in a rodent model of acute ischemic stroke. NMR IN BIOMEDICINE 2016; 29:625-30. [PMID: 26918411 PMCID: PMC4833647 DOI: 10.1002/nbm.3506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/17/2016] [Accepted: 02/01/2016] [Indexed: 05/22/2023]
Abstract
Diffusion kurtosis imaging (DKI) can offer a useful complementary tool to routine diffusion MRI for improved stratification of heterogeneous tissue damage in acute ischemic stroke. However, its relatively long imaging time has hampered its clinical application in the emergency setting. A recently proposed fast DKI approach substantially shortens the imaging time, which may help to overcome the scan time limitation. However, to date, the sensitivity of the fast DKI protocol for the imaging of acute stroke has not been fully described. In this study, we performed routine and fast DKI scans in a rodent model of acute stroke, and compared the sensitivity of diffusivity and kurtosis indices (i.e. axial, radial and mean) in depicting acute ischemic lesions. In addition, we analyzed the contrast-to-noise ratio (CNR) between the ipsilateral ischemic and contralateral normal regions using both conventional and fast DKI methods. We found that the mean kurtosis shows a relative change of 47.1 ± 7.3% between the ischemic and contralateral normal regions, being the most sensitive parameter in revealing acute ischemic injury. The two DKI methods yielded highly correlated diffusivity and kurtosis measures and lesion volumes (R(2) ⩾ 0.90, p < 0.01). Importantly, the fast DKI method exhibited significantly higher CNR of mean kurtosis (1.6 ± 0.2) compared with the routine tensor protocol (1.3 ± 0.2, p < 0.05), with its CNR per unit time (CNR efficiency) approximately doubled when the scan time was taken into account. In conclusion, the fast DKI method provides excellent sensitivity and efficiency to image acute ischemic tissue damage, which is essential for image-guided and individualized stroke treatment.
Collapse
Affiliation(s)
- Yin Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jinsuh Kim
- Department of Radiology, University of Illinois at Chicago, IL 60612, USA
| | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yingkun Guo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Gang Guo
- Department of Radiology, Xiamen 2 Hospital, Xiamen, Fujian 361021, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiology, University of Illinois at Chicago, IL 60612, USA
- Correspondence Author: Phillip Zhe Sun, Ph.D., Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA, , Phone: (1) 617-726-4060; Fax: (1) 617-726-7422
| |
Collapse
|
10
|
Lanzafame S, Giannelli M, Garaci F, Floris R, Duggento A, Guerrisi M, Toschi N. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain. Med Phys 2016; 43:2464. [DOI: 10.1118/1.4946819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Vanderauwera J, Vandermosten M, Dell'Acqua F, Wouters J, Ghesquière P. Disentangling the relation between left temporoparietal white matter and reading: A spherical deconvolution tractography study. Hum Brain Mapp 2015; 36:3273-87. [PMID: 26037303 DOI: 10.1002/hbm.22848] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 01/18/2023] Open
Abstract
Diffusion tensor imaging (DTI) studies have shown that left temporoparietal white matter is related to phonological aspects of reading. However, DTI lacks the sensitivity to disentangle whether phonological processing is sustained by intrahemispheric connections, interhemispheric connections, or projection tracts. Spherical deconvolution (SD) is a nontensor model which enables a more accurate estimation of multiple fiber directions in crossing fiber regions. Hence, this study is the first to investigate whether the observed relation with reading aspects in left temporoparietal white matter is sustained by a particular pathway by applying a nontensor model. Second, measures of degree of diffusion anisotropy, which indirectly informs about white matter organization, were compared between DTI and SD tractography. In this study, 71 children (5-6 years old) participated. Intrahemispheric, interhemispheric, and projection pathways were delineated using DTI and SD tractography. Anisotropy indices were extracted, that is, fractional anisotropy (FA) in DTI and quantitative hindrance modulated orientational anisotropy (HMOA) in SD. DTI results show that diffusion anisotropy in both the intrahemispheric and projection tracts was positively correlated to phonological awareness; however, the effect was confounded by subjects' motion. In SD, the relation was restricted to the left intrahemispheric connections. A model comparison suggested that FA was, relatively to HMOA, more confounded by fiber crossings; however, anisotropy indices were highly related. In sum, this study shows the potential of SD to quantify white matter microstructure in regions containing crossing fibers. More specifically, SD analyses show that phonological awareness is sustained by left intrahemispheric connections and not interhemispheric or projection tracts.
Collapse
Affiliation(s)
- Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maaike Vandermosten
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Flavio Dell'Acqua
- NATBRAINLAB, Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Phillips J, Charles-Edwards GD. A simple and robust test object for the assessment of isotropic diffusion kurtosis. Magn Reson Med 2014; 73:1844-51. [PMID: 24917529 DOI: 10.1002/mrm.25311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/28/2014] [Accepted: 05/15/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE To create a robust test object for the assessment of isotropic diffusion kurtosis and to investigate the relationships between barrier concentration and kurtosis and diffusion coefficients. THEORY AND METHODS Diffusion kurtosis imaging is an extension of conventional diffusion-weighted magnetic resonance imaging which provides a means of assessing the degree to which diffusion processes of spin-bearing particles are non-Gaussian, a property that is quantified by the kurtosis. We present a set of test objects, each possessing a different concentration of colloidal dispersion, allowing barrier concentration of the dispersed colloidal particles to be related to the kurtosis of the water diffusion. Diffusion coefficients from the kurtosis model and the monoexponential model are compared. RESULTS A relationship between barrier concentration and kurtosis is found, demonstrating that the diffusion process becomes less Gaussian as the barrier concentration is increased. Differences in the two estimates for the diffusion coefficients are examined. The test object is robust, displaying long-term reproducibility of results. CONCLUSIONS Colloidal dispersions provide a suitable and stable test object for the assessment and reproducibility measurements of kurtosis.
Collapse
Affiliation(s)
- Jonathan Phillips
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea, UK; Medical Engineering and Physics, King's College London, Faraday Building, 124-126, Denmark Hill, London, UK; Medical Physics, St. Thomas' Hospital, Westminster Bridge Road, London, UK
| | | |
Collapse
|
13
|
Tax CM, Otte WM, Viergever MA, Dijkhuizen RM, Leemans A. REKINDLE: Robust extraction of kurtosis INDices with linear estimation. Magn Reson Med 2014; 73:794-808. [PMID: 24687400 DOI: 10.1002/mrm.25165] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Chantal M.W. Tax
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| | - Willem M. Otte
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
- Department of Pediatric Neurology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Max A. Viergever
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| | - Rick M. Dijkhuizen
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
14
|
Gooijers J, Swinnen SP. Interactions between brain structure and behavior: the corpus callosum and bimanual coordination. Neurosci Biobehav Rev 2014; 43:1-19. [PMID: 24661987 DOI: 10.1016/j.neubiorev.2014.03.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/30/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
Bimanual coordination skills are required for countless everyday activities, such as typing, preparing food, and driving. The corpus callosum (CC) is the major collection of white matter bundles connecting both hemispheres that enables the coordination between the two sides of the body. Principal evidence for this brain-behavior relationship in humans was first provided by research on callosotomy patients, showing that sectioning (parts of) the CC affected interactions between both hands directly. Later, new noninvasive in vivo imaging techniques, such as diffusion tensor imaging, have energized the study of the link between microstructural properties of the CC and bimanual performance in normal volunteers. Here we discuss the principal factors (such as age, pathology and training) that mediate the relationship between specific bimanual functions and distinct anatomical CC subdivisions. More specifically, the question is whether different bimanual task characteristics can be mapped onto functionally distinct CC subregions. We review the current status of this mapping endeavor, and propose future perspectives to inspire research on this unique link between brain structure and behavior.
Collapse
Affiliation(s)
- J Gooijers
- KU Leuven, Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium.
| | - S P Swinnen
- KU Leuven, Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Belgium.
| |
Collapse
|
15
|
Giannelli M, Diciotti S, Guerrisi M, Traino AC, Mascalchi M, Tessa C, Toschi N. On the estimation of conventional DTI-derived indices by fitting the non-Gaussian DKI model to diffusion-weighted imaging datasets. Neuroradiology 2013; 55:1423-4. [PMID: 24005831 DOI: 10.1007/s00234-013-1271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|